-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
78 lines (58 loc) · 2.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import numpy as np
import pandas as pd
import gym
from environments.custom_env import CustomEnv
from models.rl_agent import RLAgent
from utils.data_processing import preprocess_data, load_preprocessed_data, generate_embeddings
from utils.milvus_storage import create_milvus_collection, insert_vectors_to_milvus
from agent.input_control import move_mouse_to, press_key
from agent.screen_capture import capture_screen
from agent.subtask_generation import generate_subtasks
from agent.real_world_actions import perform_real_world_actions
# Your reinforcement learning agent's code here
def run_agent(agent, env, goal, subtask_generation_func):
# Generate subtasks from the main goal
subtasks = subtask_generation_func(goal)
# For each subtask, interact with the environment to train the agent
for subtask in subtasks:
print(f"Current subtask: {subtask}")
state = env.reset(subtask)
done = False
while not done:
# Agent selects action based on the current state
action = agent.select_action(state)
# Perform action and get the next state, reward, and whether the subtask is completed
next_state, reward, done, _ = env.step(action)
# Agent learns from the transition (state, action, reward, next_state)
agent.learn(state, action, reward, next_state)
# Update the state for the next iteration
state = next_state
# After training, use the learned policy to perform actions in the real world
perform_real_world_actions(agent)
def main():
# Load and preprocess data
data_path = os.path.join("data", "raw_data.csv")
preprocessed_data_path = os.path.join("data", "preprocessed", "preprocessed_data.csv")
preprocess_data(data_path, preprocessed_data_path)
# Load preprocessed data
preprocessed_data = load_preprocessed_data(preprocessed_data_path)
# Generate embeddings for the data
embeddings = generate_embeddings(preprocessed_data)
# Create a Milvus collection and insert embeddings
collection_name = "user_data"
create_milvus_collection(collection_name, embeddings)
insert_vectors_to_milvus(collection_name, embeddings)
# Create custom environment
env = CustomEnv(preprocessed_data)
# Initialize RL agent
agent = RLAgent(env)
# Train agent
agent.train()
# Set a goal for the agent
agent.set_goal("Your goal here")
# With these lines:
goal = "Your goal here"
run_agent(agent, env, goal, generate_subtasks)
if __name__ == "__main__":
main()