-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline.py
362 lines (312 loc) · 15.6 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import glob
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
from collections import deque
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)):
# Calculate directional gradient
img = np.copy(img)
if orient == 'x':
# Sobel x
sobel = cv2.Sobel(img, cv2.CV_64F, 1, 0) # Take the derivative in x
elif orient == 'y':
# Sobel y
sobel = cv2.Sobel(img, cv2.CV_64F, 0, 1) # Take the derivative in y
else:
raise NameError('Please specify gradient orientation, x or y')
# Absolute derivative to accentuate lines away from horizontal
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
# Threshold gradient
grad_binary = np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return grad_binary
def mag_thresh(img, sobel_kernel=3, mag_thresh=(0, 255)):
# Take both Sobel x and y gradients
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# Calculate the gradient magnitude
gradmag = np.sqrt(sobelx**2 + sobely**2)
# Rescale to 8 bit
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
# Create a binary image of ones where threshold is met, zeros otherwise
mag_binary = np.zeros_like(gradmag)
mag_binary[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1
return mag_binary
def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)):
# Calculate the x and y gradients
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# Take the absolute value of the gradient direction,
# apply a threshold, and create a binary image result
absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx))
dir_binary = np.zeros_like(absgraddir)
dir_binary[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
return dir_binary
def color_threshold(img, h_thresh=(0, 255), s_thresh=(0, 255), v_thresh=(0, 255)):
img = np.copy(img)
# Convert to HSV color space and separate channel
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.float)
h_channel = hsv[:, :, 0]
s_channel = hsv[:, :, 1]
v_channel = hsv[:, :, 2]
# Threshold color channel
color_binary = np.zeros_like(s_channel)
color_binary[((s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])) &
((h_channel >= h_thresh[0]) & (h_channel <= h_thresh[1])) &
((v_channel >= v_thresh[0]) & (v_channel <= v_thresh[1]))] = 1
return color_binary
def cal_undistort(img, objpoints, imgpoints):
# Use cv2.calibrateCamera() and cv2.undistort()
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, (img.shape[1], img.shape[0]),None,None)
undist = cv2.undistort(img, mtx, dist, None, mtx)
return undist
def warp_image(img,src,dst,img_size):
M = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
Minv = cv2.getPerspectiveTransform(dst, src)
return warped, M, Minv
def calibrate(path='./camera_cal/calibration*.jpg'):
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
objpoints = []
imgpoints = []
# Make a list of calibration images
images = glob.glob(path)
# Step through the list and search for chessboard corners
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (9,6),None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
return objpoints, imgpoints
def set_perspective(img_size=(720, 1280)):
ht_window = np.uint(img_size[0]/1.5)
hb_window = np.uint(img_size[0])
c_window = np.uint(img_size[1]/2)
ctl_window = c_window - .2*np.uint(img_size[1]/2)
ctr_window = c_window + .2*np.uint(img_size[1]/2)
cbl_window = c_window - 1*np.uint(img_size[1]/2)
cbr_window = c_window + 1*np.uint(img_size[1]/2)
src = np.float32([[cbl_window,hb_window],[cbr_window,hb_window],[ctr_window,ht_window],[ctl_window,ht_window]])
dst = np.float32([[0,img_size[0]],[img_size[1],img_size[0]],[img_size[1],0],[0,0]])
return src, dst
def gradient_pipe_line(image):
img_g_mag = mag_thresh(image,3,(20,150))
img_d_mag = dir_threshold(image,3,(.6,1.1))
img_abs_x = abs_sobel_thresh(image,'x',5,(50,200))
img_abs_y = abs_sobel_thresh(image,'y',5,(50,200))
sobel_combined = np.zeros_like(img_d_mag)
sobel_combined[((img_abs_x == 1) & (img_abs_y == 1)) | \
((img_g_mag == 1) & (img_d_mag == 1))] = 1
return sobel_combined
def calc_radius(binary_warped, leftx, lefty, rightx, righty):
y_eval = binary_warped.shape[0] - 1
# Define conversions in x and y from pixels space to meters
ym_per_pix = 15/720 # meters per pixel in y dimension
xm_per_pix = 3.7/920 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
# Calculate the new radius of curvature in meters
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
return left_curverad, right_curverad
def calc_offset(binary_warped, left_fit, right_fit):
y_eval = binary_warped.shape[0] - 1
xm_per_pix = 3.7/920 # meters per pixel in x dimension
bottom_left_x = np.polyval(left_fit, y_eval)
bottom_right_x = np.polyval(right_fit, y_eval)
offset = (binary_warped.shape[1]/2 - (bottom_left_x + bottom_right_x)/2) * xm_per_pix
return offset
def extract_pixels_uninformed(binary_warped):
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]/2:,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty
def extract_pixels_informed(binary_warped, left_fit, right_fit):
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty
def polyfit_pixels(leftx, lefty, rightx, righty):
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit
def overlay_lane_detection(image, binary_warped, Minv, left_fit, right_fit):
# Create an image to draw the lines on
color_warp = np.zeros_like(image).astype(np.uint8)
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (image.shape[1],image.shape[0]))
# Combine the result with the original image
overlay = cv2.addWeighted(image, 1, newwarp, 0.3, 0)
return overlay
def overlay_curvature_pos(overlay, left_curverad, right_curverad, offset):
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(overlay, "left line radius: {0:.5g} m".format(left_curverad), (50,50), font, 1, (255,255,255),2,cv2.LINE_AA)
cv2.putText(overlay, "right line radius: {0:.5g} m".format(right_curverad), (50,100), font, 1, (255,255,255),2,cv2.LINE_AA)
if offset > 0:
rel_dir = "right"
else:
rel_dir = "left"
cv2.putText(overlay, "Vehicle is {0:.2g}m {1} of center".format(np.absolute(offset), rel_dir), (50,150), font, 1, (255,255,255),2,cv2.LINE_AA)
return overlay
def warped_lane_binary(undist, src, dst):
# Extract yellow binary
yellow_binary = color_threshold(undist,
h_thresh=(0, 50),
s_thresh=(90, 255),
v_thresh=(0, 255))
# Extract white binary
white_binary = color_threshold(undist,
h_thresh=(0, 255),
s_thresh=(0, 30),
v_thresh=(200, 255))
# Combine color binaries
color_binary = cv2.bitwise_or(yellow_binary, white_binary)
# Convert undistorted image to HLS
hls = cv2.cvtColor(undist, cv2.COLOR_RGB2HLS)
l = hls[:, :, 1]
s = hls[:, :, 2]
# Apply gradient pipe line to L and S channel
gradient_combined = gradient_pipe_line(l) + gradient_pipe_line(s)
# Apply Gaussian blur
gradient_combined_blur = cv2.GaussianBlur(gradient_combined, (5, 5), 0)
# Gradient Binary
gradient_binary = np.zeros_like(gradient_combined_blur)
gradient_binary[gradient_combined_blur > 0.5] = 1
# combine color and gradient filter
lane_combined = cv2.bitwise_or(color_binary, gradient_binary)
binary_warped, M, Minv = warp_image(lane_combined, src, dst, (undist.shape[1], undist.shape[0]))
return binary_warped, M, Minv
class Pipe_line():
def __init__(self, img_size=(720, 1280)):
print("Calibrating Camera")
self.objpoints, self.imgpoints = calibrate()
print("Setting perspective")
self.src, self.dst = set_perspective(img_size=img_size)
print("Pipe line ready")
# Init line objects
self.left_line = Line()
self.right_line = Line()
self.left_line.current_fit = None
self.right_line.current_fit = None
def process(self, image):
# undistort image
undist = cal_undistort(image, self.objpoints, self.imgpoints)
# get warped detected lanes
binary_warped, M, Minv = warped_lane_binary(undist, self.src, self.dst)
# extract lane pixels
if (self.left_line.current_fit is None) | (self.right_line.current_fit is None):
# uninformed search
leftx, lefty, rightx, righty = extract_pixels_uninformed(binary_warped)
else:
# informed search (based on margin)
leftx, lefty, rightx, righty = extract_pixels_informed(binary_warped, self.left_line.current_fit, self.right_line.current_fit)
# calculate polyfit coefficients
left_fit, right_fit = polyfit_pixels(leftx, lefty, rightx, righty)
self.left_line.update_queue(left_fit)
self.right_line.update_queue(right_fit)
# calculate curvature
left_curverad, right_curverad = calc_radius(binary_warped, leftx, lefty, rightx, righty)
# calculate offset
offset = calc_offset(binary_warped, left_fit, right_fit)
# overlay detected lane
overlay = overlay_lane_detection(undist, binary_warped, Minv, self.left_line.best_fit, self.right_line.best_fit)
# overlay curvature and position text
overlay = overlay_curvature_pos(overlay, left_curverad, right_curverad, offset)
return overlay
class Line():
def __init__(self):
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = [np.array([False])]
#polynomial coefficients queue
self.fit_queue = deque([])
# Update FIFO queue of recent values
def update_queue(self, value, n=5):
self.current_fit = value
self.fit_queue.append(value)
if len(self.fit_queue) > n:
self.fit_queue.popleft()
self.best_fit = np.average(self.fit_queue, axis=0)