You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- In PySpark, when creating a `SparkSession` with `SparkSession.builder.getOrCreate()`, if there is an existing `SparkContext`, the builder was trying to update the `SparkConf` of the existing `SparkContext` with configurations specified to the builder, but the `SparkContext` is shared by all `SparkSession`s, so we should not update them. Since 3.0, the builder comes to not update the configurations. This is the same behavior as Java/Scala API in 2.3 and above. If you want to update them, you need to update them prior to creating a `SparkSession`.
15
15
16
-
- In Spark version 2.4 and earlier, the parser of JSON data source treats empty strings as null for some data types such as `IntegerType`. For `FloatType` and `DoubleType`, it fails on empty strings and throws exceptions. Since Spark 3.0, we disallow empty strings and will throw exceptions for data types except for `StringType` and `BinaryType`.
17
-
18
16
- Since Spark 3.0, the `from_json` functions supports two modes - `PERMISSIVE` and `FAILFAST`. The modes can be set via the `mode` option. The default mode became `PERMISSIVE`. In previous versions, behavior of `from_json` did not conform to either `PERMISSIVE` nor `FAILFAST`, especially in processing of malformed JSON records. For example, the JSON string `{"a" 1}` with the schema `a INT` is converted to `null` by previous versions but Spark 3.0 converts it to `Row(null)`.
19
17
20
18
- The `ADD JAR` command previously returned a result set with the single value 0. It now returns an empty result set.
0 commit comments