Skip to content

Latest commit

 

History

History
243 lines (209 loc) · 17.5 KB

i7-8550U_clang-11.0.0_x64_Ubuntu-20.04.2LTS.md

File metadata and controls

243 lines (209 loc) · 17.5 KB

i7-8550U_clang-11.0.0_x64_Ubuntu-20.04.2LTS

Single precision, complex data for powers of 2, utilizing SIMD

Showing Millions of Operations Per Second (MFLOPS). More is better.

gnuplot figure

size log2 FFTPack FFTW F(estim) FFTW F(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 458.886311 957.729685 1654.928833 664.796871 0.000000 0.000000
4 2.000 1311.790085 3194.847652 4862.275210 2592.272427 0.000000 0.000000
8 3.000 1834.025986 6077.966128 7424.510845 6492.564457 0.000000 0.000000
16 4.000 4786.373197 9246.783971 10039.329697 15885.500668 8856.614452 7775.908743
32 5.000 5007.312563 11885.692975 26917.963339 25910.810685 11489.362149 9313.303545
64 6.000 7083.638192 30335.502805 32527.862702 39385.813142 16132.875137 13511.470032
128 7.000 7745.995698 37333.940311 42157.423465 44546.512187 18693.321310 15797.894737
256 8.000 8149.175727 40664.587163 46179.205969 58172.555806 21752.314401 18538.873174
512 9.000 8134.679222 44141.577526 47397.831172 56557.500100 21544.825682 18767.660776
1024 10.000 7794.380704 45183.008384 48890.769108 56879.808460 23181.058207 20385.727590
2048 11.000 8295.312989 43557.729183 46697.602408 46991.433708 19900.535532 17695.899455
4096 12.000 7450.898612 32601.215206 0.000000 42104.523436 19649.493744 17809.780556
8192 13.000 6961.212241 21996.976428 0.000000 42753.015974 18246.856732 16879.214164
16384 14.000 6504.257358 20469.981623 0.000000 40319.105133 17061.137594 14407.082563
32768 15.000 7140.386785 19176.432026 0.000000 38285.373134 16133.290185 14610.227114
65536 16.000 6071.015340 18097.307077 0.000000 34244.898241 15552.584741 14603.831997
131072 17.000 6341.284093 17112.949153 0.000000 32937.970049 14927.840063 14164.785220
262144 18.000 5884.149012 16652.708204 0.000000 32979.136269 15405.234865 14563.938112
524288 19.000 6462.445506 6170.998117 0.000000 22160.068046 11336.888507 10783.697194
1048576 20.000 5398.283074 3691.497439 0.000000 17125.200065 7980.485949 7513.980652
2097152 21.000 4879.799668 3749.313991 0.000000 16739.061568 7104.631864 6852.193865

Single precision, real data for powers of 2, utilizing SIMD

Showing Millions of Operations Per Second (MFLOPS). More is better.

gnuplot figure

size log2 FFTPack FFTW F(estim) FFTW F(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 303.959480 867.678971 879.647246 318.482015 0.000000 0.000000
4 2.000 907.908741 2850.466167 2852.552074 1183.891290 0.000000 0.000000
8 3.000 1257.547627 5797.324870 5910.096882 3124.286818 0.000000 0.000000
16 4.000 2895.957760 8167.614822 7299.367048 5884.072972 0.000000 0.000000
32 5.000 3307.920509 4933.907641 9188.573859 10344.041629 7067.517078 6319.924340
64 6.000 5145.847863 6523.593330 10503.116663 17910.879952 11330.376496 9951.918095
128 7.000 6163.199875 10706.979968 14122.549048 26549.744257 15054.357156 13420.611682
256 8.000 7596.641060 13907.978086 16423.710216 27693.926032 19994.409092 17806.174426
512 9.000 7314.207444 15843.658223 20293.070191 31749.147014 21861.633187 19869.276142
1024 10.000 7715.435992 16910.491304 20722.864093 35922.854490 25330.218730 22888.349836
2048 11.000 7554.692772 18125.614680 22675.132151 39283.589198 24853.593768 22850.703628
4096 12.000 7297.849117 17017.990880 0.000000 35236.933612 23627.260579 21620.543168
8192 13.000 6890.005118 17141.198888 0.000000 34535.354127 18838.918591 16728.077192
16384 14.000 6754.839031 17737.263276 0.000000 33481.883211 18414.660779 16986.868576
32768 15.000 6062.247861 14735.948763 0.000000 31671.697064 16053.537387 15049.721648
65536 16.000 5934.486411 13381.450031 0.000000 30893.474098 14175.674060 13255.111860
131072 17.000 5856.783162 12973.199653 0.000000 29782.553913 14236.621166 13167.616121
262144 18.000 5718.531290 12480.406263 0.000000 28977.437859 14729.049406 13487.964901
524288 19.000 5643.855865 11649.784685 0.000000 20417.306261 14608.892829 14544.611219
1048576 20.000 5478.131510 11349.742453 0.000000 20497.615138 10485.760000 8494.514999
2097152 21.000 4159.208205 6684.139656 0.000000 16795.344308 6515.977984 6067.044684

Single precision, complex data for powers of 2, utilizing SIMD

Showing Duration relative to ordered PFFFT. Less is better.

gnuplot figure

size log2 FFTPack FFTW F(estim) FFTW F(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 inf inf inf inf 0.000000 0.000000
4 2.000 inf inf inf inf 0.000000 0.000000
8 3.000 inf inf inf inf 0.000000 0.000000
16 4.000 1.624594 0.840931 0.774544 0.489497 0.877978 1.000000
32 5.000 1.859940 0.783572 0.345989 0.359437 0.810601 1.000000
64 6.000 1.907413 0.445400 0.415379 0.343054 0.837508 1.000000
128 7.000 2.039488 0.423151 0.374735 0.354636 0.845103 1.000000
256 8.000 2.274928 0.455897 0.401454 0.318685 0.852270 1.000000
512 9.000 2.307111 0.425171 0.395961 0.331834 0.871093 1.000000
1024 10.000 2.615418 0.451182 0.416962 0.358397 0.879399 1.000000
2048 11.000 2.133266 0.406264 0.378944 0.376575 0.889211 1.000000
4096 12.000 2.390298 0.546286 0.546286 0.422988 0.906373 1.000000
8192 13.000 2.424753 0.767337 0.767337 0.394807 0.925045 1.000000
16384 14.000 2.214991 0.703807 0.703807 0.357324 0.844430 1.000000
32768 15.000 2.046141 0.761885 0.761885 0.381614 0.905595 1.000000
65536 16.000 2.405518 0.806969 0.806969 0.426457 0.939012 1.000000
131072 17.000 2.233742 0.827733 0.827733 0.430046 0.948886 1.000000
262144 18.000 2.475140 0.874574 0.874574 0.441614 0.945391 1.000000
524288 19.000 1.668697 1.747511 1.747511 0.486639 0.951212 1.000000
1048576 20.000 1.391954 2.035537 2.035537 0.438765 0.941546 1.000000
2097152 21.000 1.404176 1.827563 1.827563 0.409340 0.964448 1.000000

Single precision, real data for powers of 2, utilizing SIMD

Showing Duration relative to ordered PFFFT. Less is better.

gnuplot figure

size log2 FFTPack FFTW F(estim) FFTW F(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 inf inf inf inf 0.000000 0.000000
4 2.000 inf inf inf inf 0.000000 0.000000
8 3.000 inf inf inf inf 0.000000 0.000000
16 4.000 inf inf inf inf 0.000000 0.000000
32 5.000 1.910550 1.280918 0.687805 0.610975 0.894224 1.000000
64 6.000 1.933968 1.525522 0.947514 0.555631 0.878337 1.000000
128 7.000 2.177538 1.253435 0.950291 0.505490 0.891474 1.000000
256 8.000 2.343955 1.280281 1.084171 0.642963 0.890554 1.000000
512 9.000 2.716535 1.254088 0.979117 0.625823 0.908866 1.000000
1024 10.000 2.966555 1.353489 1.104498 0.637149 0.903595 1.000000
2048 11.000 3.024740 1.260690 1.007749 0.581687 0.919413 1.000000
4096 12.000 2.962584 1.270464 1.270464 0.613581 0.915070 1.000000
8192 13.000 2.427892 0.975906 0.975906 0.484379 0.887961 1.000000
16384 14.000 2.514780 0.957691 0.957691 0.507344 0.922469 1.000000
32768 15.000 2.482544 1.021302 1.021302 0.475180 0.937458 1.000000
65536 16.000 2.233585 0.990557 0.990557 0.429055 0.935054 1.000000
131072 17.000 2.248272 1.014988 1.014988 0.442125 0.924914 1.000000
262144 18.000 2.358628 1.080725 1.080725 0.465460 0.915729 1.000000
524288 19.000 2.577063 1.248477 1.248477 0.712363 0.995595 1.000000
1048576 20.000 1.550639 0.748436 0.748436 0.414410 0.810105 1.000000
2097152 21.000 1.458701 0.907677 0.907677 0.361233 0.931094 1.000000

Double precision, complex data for powers of 2, utilizing SIMD

Showing Millions of Operations Per Second (MFLOPS). More is better.

gnuplot figure

size log2 FFTPack FFTW D(estim) FFTW D(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 451.828811 809.087899 1826.292555 611.139334 0.000000 0.000000
4 2.000 1201.249919 2574.491966 6005.351536 2333.526663 0.000000 0.000000
8 3.000 1532.269942 5368.936776 11386.559764 5425.723607 0.000000 0.000000
16 4.000 3858.671168 8692.188118 14189.386715 12822.177796 7927.987567 6150.279966
32 5.000 4003.535154 11505.403049 15942.805175 19293.936252 9557.470848 7856.736481
64 6.000 5472.250055 17084.325960 19451.990120 22704.873836 13260.192773 10651.569817
128 7.000 5759.872999 16672.546124 22198.500305 26272.302464 14459.980721 12022.535360
256 8.000 7020.624127 19143.938744 24896.379443 29257.570352 17115.458596 14818.942123
512 9.000 6141.791164 20586.820583 23442.182311 27652.344774 18113.623112 14367.339298
1024 10.000 6001.042427 18367.148346 22036.330287 24093.078673 16025.162161 13349.804996
2048 11.000 5722.559015 20830.777159 20814.603659 21781.385510 14840.786153 12759.562328
4096 12.000 6392.139532 13573.727311 0.000000 20661.543342 14890.387622 12941.676768
8192 13.000 5812.382803 12332.590306 0.000000 20511.648748 11856.570664 10662.928661
16384 14.000 5359.181192 11473.334915 0.000000 18262.105088 10702.804536 9549.654518
32768 15.000 4810.868303 10722.513089 0.000000 18430.980587 9953.364848 9015.525306
65536 16.000 5456.963499 11287.372471 0.000000 16990.347374 9920.368838 8034.852825
131072 17.000 4878.222034 9672.701346 0.000000 16312.143699 9035.662510 8519.191831
262144 18.000 4372.160722 6826.172875 0.000000 11070.299128 7043.268803 6498.287198
524288 19.000 3889.857796 4498.352009 0.000000 9037.339485 4498.555153 4146.935397
1048576 20.000 3663.723555 2345.033798 0.000000 7748.050812 4170.614907 3933.217052
2097152 21.000 2718.329013 2034.743510 0.000000 6857.920209 4015.279879 3846.926534

Double precision, real data for powers of 2, utilizing SIMD

Showing Millions of Operations Per Second (MFLOPS). More is better.

gnuplot figure

size log2 FFTPack FFTW D(estim) FFTW D(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 295.351776 788.053702 788.107711 286.257756 0.000000 0.000000
4 2.000 889.863131 2354.157956 2415.305889 1059.618241 0.000000 0.000000
8 3.000 1186.596958 5500.146226 5466.918443 2765.025793 0.000000 0.000000
16 4.000 2725.085543 8260.796082 8210.086873 5482.974493 0.000000 0.000000
32 5.000 3062.977432 5434.832500 7449.517079 7220.520984 6181.758945 5208.791788
64 6.000 5027.508496 8182.764935 9935.168676 13694.823106 10559.157751 7721.586252
128 7.000 5685.203772 13556.693293 14160.530555 17328.342071 13516.662282 11228.562523
256 8.000 7261.353541 11516.634992 16950.311501 18356.236213 19015.509136 14937.455223
512 9.000 6459.875541 15381.090463 18245.878708 20852.476529 21264.670410 16190.543645
1024 10.000 6765.505425 17239.881004 18466.800409 21468.733885 25385.779749 19172.852195
2048 11.000 6460.858130 18066.094741 17544.172124 19180.116603 17078.838788 14158.825393
4096 12.000 5951.482682 16114.444925 0.000000 18311.255284 12570.006793 11304.799718
8192 13.000 5347.318695 12090.415765 0.000000 16573.722666 11129.284018 10147.323292
16384 14.000 4833.773927 9587.112057 0.000000 15875.330541 10126.545188 9182.900260
32768 15.000 4913.987883 10239.932914 0.000000 14752.005476 8464.035380 7401.040814
65536 16.000 4946.178016 8761.369505 0.000000 15041.534354 8948.551469 8021.773006
131072 17.000 5162.398639 8830.419878 0.000000 15521.821511 9067.987844 7490.964127
262144 18.000 4599.824531 7406.263194 0.000000 10102.121156 8064.590668 7835.485414
524288 19.000 4196.913903 6169.903768 0.000000 10257.551254 5756.301718 5316.421082
1048576 20.000 3052.711869 3859.717919 0.000000 8468.919414 3738.772017 3392.022774
2097152 21.000 2614.390483 2807.110295 0.000000 7581.154841 3471.704523 3167.584332

Double precision, complex data for powers of 2, utilizing SIMD

Showing Duration relative to ordered PFFFT. Less is better.

gnuplot figure

size log2 FFTPack FFTW D(estim) FFTW D(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 inf inf inf inf 0.000000 0.000000
4 2.000 inf inf inf inf 0.000000 0.000000
8 3.000 inf inf inf inf 0.000000 0.000000
16 4.000 1.593884 0.707563 0.433442 0.479661 0.775766 1.000000
32 5.000 1.962447 0.682874 0.492808 0.407213 0.822051 1.000000
64 6.000 1.946471 0.623470 0.547583 0.469130 0.803275 1.000000
128 7.000 2.087301 0.721102 0.541593 0.457613 0.831435 1.000000
256 8.000 2.110776 0.774076 0.595222 0.506499 0.865816 1.000000
512 9.000 2.339278 0.697893 0.612883 0.519573 0.793185 1.000000
1024 10.000 2.224576 0.726828 0.605805 0.554094 0.833044 1.000000
2048 11.000 2.229721 0.612538 0.613011 0.585806 0.859779 1.000000
4096 12.000 2.024645 0.953433 0.953433 0.626366 0.869140 1.000000
8192 13.000 1.834535 0.864616 0.864616 0.519846 0.899329 1.000000
16384 14.000 1.781904 0.832322 0.832322 0.522923 0.892249 1.000000
32768 15.000 1.873967 0.840799 0.840799 0.489154 0.905771 1.000000
65536 16.000 1.472398 0.711836 0.711836 0.472906 0.809933 1.000000
131072 17.000 1.746372 0.880744 0.880744 0.522261 0.942834 1.000000
262144 18.000 1.486303 0.951966 0.951966 0.587003 0.922625 1.000000
524288 19.000 1.066092 0.921847 0.921847 0.458859 0.921824 1.000000
1048576 20.000 1.073548 1.677251 1.677251 0.507643 0.943075 1.000000
2097152 21.000 1.415148 1.890607 1.890607 0.560939 0.958065 1.000000

Double precision, real data for powers of 2, utilizing SIMD

Showing Duration relative to ordered PFFFT. Less is better.

gnuplot figure

size log2 FFTPack FFTW D(estim) FFTW D(auto) Intel MKL PFFFT-U(simd) PFFFT (simd)
2 1.000 inf inf inf inf 0.000000 0.000000
4 2.000 inf inf inf inf 0.000000 0.000000
8 3.000 inf inf inf inf 0.000000 0.000000
16 4.000 inf inf inf inf 0.000000 0.000000
32 5.000 1.700560 0.958409 0.699209 0.721386 0.842606 1.000000
64 6.000 1.535864 0.943640 0.777194 0.563832 0.731271 1.000000
128 7.000 1.975052 0.828268 0.792947 0.647987 0.830717 1.000000
256 8.000 2.057108 1.297036 0.881254 0.813755 0.785542 1.000000
512 9.000 2.506324 1.052627 0.887354 0.776431 0.761380 1.000000
1024 10.000 2.833920 1.112133 1.038233 0.893063 0.755260 1.000000
2048 11.000 2.191477 0.783728 0.807037 0.738200 0.829028 1.000000
4096 12.000 1.899485 0.701530 0.701530 0.617367 0.899349 1.000000
8192 13.000 1.897647 0.839272 0.839272 0.612246 0.911754 1.000000
16384 14.000 1.899746 0.957844 0.957844 0.578436 0.906810 1.000000
32768 15.000 1.506100 0.722752 0.722752 0.501701 0.874406 1.000000
65536 16.000 1.621818 0.915590 0.915590 0.533317 0.896446 1.000000
131072 17.000 1.451060 0.848311 0.848311 0.482606 0.826087 1.000000
262144 18.000 1.703449 1.057952 1.057952 0.775634 0.971601 1.000000
524288 19.000 1.266740 0.861659 0.861659 0.518289 0.923565 1.000000
1048576 20.000 1.111136 0.878828 0.878828 0.400534 0.907272 1.000000
2097152 21.000 1.211606 1.128416 1.128416 0.417825 0.912402 1.000000