-
Notifications
You must be signed in to change notification settings - Fork 24
/
rexnetv1.py
145 lines (114 loc) · 5.07 KB
/
rexnetv1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
ReXNet
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import torch
import torch.nn as nn
from math import ceil
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
return x * self.sigmoid(x)
def _add_conv(out, in_channels, channels, kernel=1, stride=1, pad=0,
num_group=1, active=True, relu6=False):
out.append(nn.Conv2d(in_channels, channels, kernel, stride, pad, groups=num_group, bias=False))
out.append(nn.BatchNorm2d(channels))
if active:
out.append(nn.ReLU6(inplace=True) if relu6 else nn.ReLU(inplace=True))
def _add_conv_swish(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1):
out.append(nn.Conv2d(in_channels, channels, kernel, stride, pad, groups=num_group, bias=False))
out.append(nn.BatchNorm2d(channels))
out.append(Swish())
class SE(nn.Module):
def __init__(self, in_channels, channels, se_ratio=12):
super(SE, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, channels // se_ratio, kernel_size=1, padding=0),
nn.BatchNorm2d(channels // se_ratio),
nn.ReLU(inplace=True),
nn.Conv2d(channels // se_ratio, channels, kernel_size=1, padding=0),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.fc(y)
return x * y
class LinearBottleneck(nn.Module):
def __init__(self, in_channels, channels, t, stride, use_se=True, se_ratio=12,
**kwargs):
super(LinearBottleneck, self).__init__(**kwargs)
self.use_shortcut = stride == 1 and in_channels <= channels
self.in_channels = in_channels
self.out_channels = channels
out = []
if t != 1:
dw_channels = in_channels * t
_add_conv_swish(out, in_channels=in_channels, channels=dw_channels)
else:
dw_channels = in_channels
_add_conv(out, in_channels=dw_channels, channels=dw_channels, kernel=3, stride=stride, pad=1,
num_group=dw_channels,
active=False)
if use_se:
out.append(SE(dw_channels, dw_channels, se_ratio))
out.append(nn.ReLU6())
_add_conv(out, in_channels=dw_channels, channels=channels, active=False, relu6=True)
self.out = nn.Sequential(*out)
def forward(self, x):
out = self.out(x)
if self.use_shortcut:
out[:, 0:self.in_channels] += x
return out
class ReXNetV1(nn.Module):
def __init__(self, input_ch=16, final_ch=180, width_mult=1.0, depth_mult=1.0, classes=1000,
use_se=True,
se_ratio=12,
dropout_ratio=0.2,
bn_momentum=0.9):
super(ReXNetV1, self).__init__()
layers = [1, 2, 2, 3, 3, 5]
strides = [1, 2, 2, 2, 1, 2]
layers = [ceil(element * depth_mult) for element in layers]
strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
ts = [1] * layers[0] + [6] * sum(layers[1:])
self.depth = sum(layers[:]) * 3
stem_channel = 32 / width_mult if width_mult < 1.0 else 32
inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch
features = []
in_channels_group = []
channels_group = []
_add_conv_swish(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=2, pad=1)
# The following channel configuration is a simple instance to make each layer become an expand layer.
for i in range(self.depth // 3):
if i == 0:
in_channels_group.append(int(round(stem_channel * width_mult)))
channels_group.append(int(round(inplanes * width_mult)))
else:
in_channels_group.append(int(round(inplanes * width_mult)))
inplanes += final_ch / (self.depth // 3 * 1.0)
channels_group.append(int(round(inplanes * width_mult)))
if use_se:
use_ses = [False] * (layers[0] + layers[1]) + [True] * sum(layers[2:])
else:
use_ses = [False] * sum(layers[:])
for block_idx, (in_c, c, t, s, se) in enumerate(zip(in_channels_group, channels_group, ts, strides, use_ses)):
features.append(LinearBottleneck(in_channels=in_c,
channels=c,
t=t,
stride=s,
use_se=se, se_ratio=se_ratio))
pen_channels = int(1280 * width_mult)
_add_conv_swish(features, c, pen_channels)
features.append(nn.AdaptiveAvgPool2d(1))
self.features = nn.Sequential(*features)
self.output = nn.Sequential(
nn.Dropout(dropout_ratio),
nn.Conv2d(pen_channels, classes, 1, bias=True))
def forward(self, x):
x = self.features(x)
x = self.output(x).squeeze()
return x