-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
231 lines (188 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python3
import os.path
import tensorflow as tf
import helper
import warnings
from distutils.version import LooseVersion
import project_tests as tests
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
def load_vgg(sess, vgg_path):
"""
Load Pretrained VGG Model into TensorFlow.
:param sess: TensorFlow Session
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
"""
# TODO: Implement function
vgg_tag = 'vgg16'
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
vgg_layer3_out_tensor_name = 'layer3_out:0'
vgg_layer4_out_tensor_name = 'layer4_out:0'
vgg_layer7_out_tensor_name = 'layer7_out:0'
# Use tf.saved_model.loader.load to load the model and weights
# (https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/saved_model/load)
model = tf.saved_model.loader.load(sess, [vgg_tag], vgg_path)
graph = tf.get_default_graph()
image_input = graph.get_tensor_by_name(vgg_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name)
layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name)
layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name)
return image_input, keep_prob, layer3_out, layer4_out, layer7_out
tests.test_load_vgg(load_vgg, tf)
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer3_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer7_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
'''
FCN32 uses a stride of 32 because after pool5 the spatial resolution is 2^5=32 times smaller, similarly pool4 should use a stride
of 2^4=16 and pool3 should use a stride of 2^3=8.
VGG16 model first uses stride 2 to upsample pool5 to the same size as pool4, then uses another stride 2 to upsample these 2 to be
the same size as pool3, and finally upsamples these 3 all together with stride=8. So pool5 gets enlarged 2*2*8=32 times, pool4 gets
enlarged 2*8=16 times and pool3 gets 8 times.
The reason of doing it this way instead of using strides of 8, 16, 32 separately for each layer is to save the amount of computations.
As in the end we are summing them together it's more efficient to sum before upsampling than after.
for example, say image size = (224,224):
encoder: (224,224) ->pool1-> (112,112) ->pool2-> (56,56) ->pool3-> (28,28) ->pool4-> (14,14) ->pool5-> (7,7)
decoder: (7,7) ->upsampling1(stride=2)-> (14,14) ->upsampling2(stride=2)-> (28,28) ->final_upsampling(stride=8)-> (224,224)
The kernel size seems more of a design choice, though it is not mentioned in the paper directly, the paper provides a link to their
[Caffe implementation](https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/voc-fcn8s-atonce/net.py#L60), which uses a
kernel size eof 4 for stride 2 layer. Also note that the outputs of pooling layers 3 and 4 are scaled before they are fed into the
1x1 convolutions.
'''
# TODO: Implement function
# Reduce the number of filters from 4096 to 2
conv_1x1_layer7 = tf.layers.conv2d(vgg_layer7_out, num_classes, kernel_size=1, strides=(1,1), name='conv_1x1_layer7')
# Updampling with the same filters as pool4 layer
upsampling1 = tf.layers.conv2d_transpose(conv_1x1_layer7, num_classes, kernel_size=4,
strides=(2,2), padding='SAME', name='upsampling_1')
# Scale the pool4 layer
pool4_out_scaled = tf.multiply(vgg_layer4_out, 0.01, name='pool4_out_scaled')
# Use 1x1 convolution to reduce the computational cost
conv_1x1_pool4 = tf.layers.conv2d(pool4_out_scaled, num_classes, kernel_size=1, strides=(1,1), name='conv_1x1_pool4')
# Apply skip connection
skip1 = tf.add(upsampling1, conv_1x1_pool4, name='skip_1')
# Updampling skip1 layer with the same filters as pool3 layer
upsampling2 = tf.layers.conv2d_transpose(skip1, num_classes, kernel_size=4,
strides=(2,2), padding='SAME', name='upsampling_2')
# Scale the pool3 layer
pool3_out_scaled = tf.multiply(vgg_layer3_out, 0.0001, name='pool3_out_scaled')
# Use 1x1 convolution to reduce the computational cost
conv_1x1_pool4 = tf.layers.conv2d(pool3_out_scaled, num_classes, kernel_size=1, strides=(1,1), name='conv_1x1_pool3')
# Apply skip connection
skip2 = tf.add(upsampling2, conv_1x1_pool4, name='skip_2')
# Final upsampling to the same size as input
output = tf.layers.conv2d_transpose(skip2, num_classes, kernel_size=16, strides=(8,8), padding='SAME', name='output')
return output
tests.test_layers(layers)
def optimize(nn_last_layer, correct_label, learning_rate, num_classes):
"""
Build the TensorFLow loss and optimizer operations.
:param nn_last_layer: TF Tensor of the last layer in the neural network
:param correct_label: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:return: Tuple of (logits, train_op, cross_entropy_loss)
"""
# TODO: Implement function
# Reshape logits and correct_label from 4D to 2D
logits = tf.reshape(nn_last_layer, (-1, num_classes), name='fcn_logits')
reshaped_label = tf.reshape(correct_label, (-1, num_classes))
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=reshaped_label), name='fcn_loss')
# Add regularization
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_constant = 0.001
loss = cross_entropy_loss + reg_constant * sum(reg_losses)
# Use Adam optimizer that minimize the loss
train_op = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cross_entropy_loss, name='fcn_train_op')
return logits, train_op, loss
tests.test_optimize(optimize)
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image,
correct_label, keep_prob, learning_rate):
"""
Train neural network and print out the loss during training.
:param sess: TF Session
:param epochs: Number of epochs
:param batch_size: Batch size
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)
:param train_op: TF Operation to train the neural network
:param cross_entropy_loss: TF Tensor for the amount of loss
:param input_image: TF Placeholder for input images
:param correct_label: TF Placeholder for label images
:param keep_prob: TF Placeholder for dropout keep probability
:param learning_rate: TF Placeholder for learning rate
"""
# TODO: Implement function
init = tf.global_variables_initializer()
sess.run(init)
print("training.....")
print()
for epoch in range(epochs):
total_loss = 0
for batch_x, batch_y in get_batches_fn(batch_size):
_, loss = sess.run([train_op, cross_entropy_loss], feed_dict={input_image:batch_x, correct_label:batch_y, keep_prob:0.6, learning_rate:0.001})
total_loss += loss
print("EPOCH {} ...".format(epoch+1))
print("Total loss: {:.3f}".format(total_loss))
print()
tests.test_train_nn(train_nn)
def run():
num_classes = 2
image_shape = (160, 576) # KITTI dataset uses 160x576 images
data_dir = './data'
runs_dir = './runs'
export_dir = './saved_model'
tests.test_for_kitti_dataset(data_dir)
# Download pretrained vgg model
helper.maybe_download_pretrained_vgg(data_dir)
# OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
# You'll need a GPU with at least 10 teraFLOPS to train on.
# https://www.cityscapes-dataset.com/
# Save model and freeze it later
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
with tf.Session() as sess:
# Path to vgg model
vgg_path = os.path.join(data_dir, 'vgg')
# Create function to get batches
get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape)
# OPTIONAL: Augment Images for better results
# https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
# TODO: Build NN using load_vgg, layers, and optimize function
image_input, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
last_layer = layers(layer3_out, layer4_out, layer7_out, num_classes)
# Placeholder
correct_label = tf.placeholder(tf.int32, shape=[None, None, None, num_classes], name='correct_label')
learning_rate = tf.placeholder(tf.double, name='learning_rate')
logits, train_op, loss = optimize(last_layer, correct_label, learning_rate, num_classes)
# TODO: Train NN using the train_nn function
saver = tf.train.Saver()
epochs = 50
batch_size = 8
train_nn(sess, epochs, batch_size, get_batches_fn, train_op, loss, image_input, correct_label, keep_prob, learning_rate)
builder.add_meta_graph_and_variables(sess, ['carnd'])
builder.save()
try:
saver
except NameError:
saver = tf.train.Saver()
saver.save(sess, './saved_model/model.ckpt')
print("Model saved")
# saver.restore(sess, './model.ckpt')
# TODO: Save inference data using helper.save_inference_samples
helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, image_input)
# OPTIONAL: Apply the trained model to a video
if __name__ == '__main__':
run()