forked from ElvinC/gyroflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgyrolog.py
1328 lines (977 loc) · 40.5 KB
/
gyrolog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
from scipy.spatial.transform import Rotation
import csv
import re
import time
import sys, inspect
import logging
from scipy import signal, interpolate
from scipy.fft import fft, fftfreq
import insta360_utility as insta360_util
from blackbox_extract import BlackboxExtractor
from GPMF_gyro import Extractor as GPMFExtractor
# Generate 24 different (right handed) orientations using cross products
def generate_rotmats():
basis = [[1,0,0], [0,1,0], [0,0,1], [-1,0,0], [0,-1,0], [0,0,-1]] # Six different unit vectors
basis = [np.array(v) for v in basis]
ORIENTATIONS = []
for i in range(len(basis)):
for j in range(len(basis)):
if i != j and (i + 3) % 6 != j:
ivec = basis[i]
jvec = basis[j]
kvec = np.cross(ivec,jvec)
mat = np.vstack([ivec, jvec, kvec]).transpose()
ORIENTATIONS.append(mat)
# 24 different (right handed) rotation matrices
ORIENTATIONS = [[[1, 0, 0], # 0 = identity
[0, 1, 0],
[0, 0, 1]],
[[ 1, 0, 0],
[ 0, 0, -1],
[ 0, 1, 0]],
[[ 1, 0, 0],
[ 0, -1, 0],
[ 0, 0, -1]],
[[ 1, 0, 0],
[ 0, 0, 1],
[ 0, -1, 0]],
[[ 0, 1, 0],
[ 1, 0, 0],
[ 0, 0, -1]],
[[0, 0, 1],
[1, 0, 0],
[0, 1, 0]],
[[ 0, -1, 0],
[ 1, 0, 0],
[ 0, 0, 1]],
[[ 0, 0, -1],
[ 1, 0, 0],
[ 0, -1, 0]],
[[0, 1, 0],
[0, 0, 1],
[1, 0, 0]],
[[ 0, 0, -1],
[ 0, 1, 0],
[ 1, 0, 0]],
[[ 0, -1, 0],
[ 0, 0, -1],
[ 1, 0, 0]],
[[ 0, 0, 1],
[ 0, -1, 0],
[ 1, 0, 0]],
[[-1, 0, 0],
[ 0, 1, 0],
[ 0, 0, -1]],
[[-1, 0, 0],
[ 0, 0, 1],
[ 0, 1, 0]],
[[-1, 0, 0],
[ 0, -1, 0],
[ 0, 0, 1]],
[[-1, 0, 0],
[ 0, 0, -1],
[ 0, -1, 0]],
[[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]],
[[ 0, 0, -1],
[-1, 0, 0],
[ 0, 1, 0]],
[[ 0, -1, 0],
[-1, 0, 0],
[ 0, 0, -1]],
[[ 0, 0, 1],
[-1, 0, 0],
[ 0, -1, 0]],
[[ 0, 1, 0],
[ 0, 0, -1],
[-1, 0, 0]],
[[ 0, 0, 1],
[ 0, 1, 0],
[-1, 0, 0]],
[[ 0, -1, 0],
[ 0, 0, 1],
[-1, 0, 0]],
[[ 0, 0, -1],
[ 0, -1, 0],
[-1, 0, 0]]]
ORIENTATIONS = [np.array(mat) for mat in ORIENTATIONS]
def get_rotmat_from_id(id):
return ORIENTATIONS[id]
def generate_uptilt_mat(angle, degrees=False):
# Positive angle equals tilting camera up (gyro tilts down)
angle = angle * np.pi / 180 if degrees else angle
angle = -angle
rotmat = np.array([[1,0,0],
[0,np.cos(angle),-np.sin(angle)],
[0,np.sin(angle),np.cos(angle)]])
return rotmat
def show_orientation(rotmat):
orig_lw = 4
sensor_lw = 2
rotmat = np.array(rotmat)
ivec = np.array([1,0,0]) # points to the "right". positive equals pitch up (objects in frame move down)
jvec = np.array([0,1,0]) # points up.
kvec = np.array([0,0,1]) # points away from lens
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
v = np.array([[-0.9, -0.7, -1], [0.9, -0.7, -1], [0.9, 0.7, -1], [-0.9, 0.7, -1], [0, 0, 0]])
ax.scatter3D(v[:, 0], v[:, 1], v[:, 2])
# "Standard" orientation
ax.quiver([0],[0],[0], [1], [0], [0], color = 'red', alpha = .6, lw = orig_lw,)
ax.quiver([0],[0],[0], [0], [1], [0], color = 'green', alpha = .6, lw = orig_lw,)
ax.quiver([0],[0],[0], [0], [0], [1], color = 'blue', alpha = .6, lw = orig_lw,)
sensor_i = rotmat * ivec * 1.6
sensor_j = rotmat * jvec * 1.6
sensor_k = rotmat * kvec * 1.6
ax.quiver([0],[0],[0], sensor_i[0], sensor_i[1], sensor_i[2], color = 'red', alpha = .8, lw = sensor_lw,)
ax.quiver([0],[0],[0], sensor_j[0], sensor_j[1], sensor_j[2], color = 'green', alpha = .8, lw = sensor_lw,)
ax.quiver([0],[0],[0], sensor_k[0], sensor_k[1], sensor_k[2], color = 'blue', alpha = .8, lw = sensor_lw,)
ax.set_xlim3d(-1.8, 1.8)
ax.set_ylim3d(-1.8, 1.8)
ax.set_zlim3d(-1.8, 1.8)
# based on https://stackoverflow.com/questions/39408794/python-3d-pyramid
verts = [ [v[0],v[1],v[4]], [v[0],v[3],v[4]],
[v[2],v[1],v[4]], [v[2],v[3],v[4]], [v[0],v[1],v[2],v[3]]]
ax.add_collection3d(Poly3DCollection(verts, facecolors='red', linewidths=1, edgecolors='red', alpha=0.1))
plt.show()
class GyrologReader:
def __init__(self, name="gyrolog"):
self.name = name
# The scaled data read from the file
self.gyro = None # N*4 array with each column containing [t, gx, gy, gz]
self.acc = None # N*4 array with each column containing [t, ax, ay, az]
# The transformed data according to the gyroflow convention
self.standard_gyro = None
self.standard_acc = None
self.extracted = False
self.has_acc = False
# Assume same time reference and orientation used for both
self.default_filter = -1
self.default_search_size = 10 # expected range of gyro/video offset
self.pre_filter = -1
self.filename = ""
# Extra settings
self.angle_setting = 0
# Slightly different log formats
self.variants = {
"default": [0], # dict entry with correction matrix ID from ORIENTATIONS
"default": [-1, [[1,0,0],[0,1,0],[0,0,1]]], # Alternatively -1 with second entry being a rotation matrix
}
self.variant = "default"
self.orientation_presets = []
self.current_orientation_preset = ""
self.filename_pattern = ""
def set_pre_filter(self, cutoff = -1):
# Filter is applied before orientation transformation
self.pre_filter = cutoff
def post_init(self):
# Run after init
assert self.variant in self.variants
def set_cam_up_angle(self,angle=0,degrees=False):
self.angle_setting = angle * np.pi / 180 if degrees else angle
def get_variants(self):
return list(self.variants)
def set_variant(self, variant=None):
if variant in self.variants:
self.variant = variant
def get_variant_rotmat(self):
info = self.variants[self.variant]
if info[0] == -1 and len(info) == 2:
return np.array(info[1])
else:
return get_rotmat_from_id(info[0])
def filename_matches(self, filename):
pattern = re.compile(self.filename_pattern)
if pattern.match(filename):
return True
return False
def add_orientation_preset(self, orientation_name, correction_mat):
self.orientation_presets.append([len(self.orientation_presets),orientation_name, correction_mat])
def guess_log_from_videofile(self, videofile):
return ""
return videofile
def load_log_from_videofile(self, videofile):
# Detect corresponding gyro log to a video file and loads it if available
path = self.guess_log_from_videofile(videofile)
if path:
# detected valid path
return self.extract_log(path)
return False
def check_log_type(self, filename):
# method to check if a data or video file is a certain log type
return False
def extract_log_internal(self, filename):
# To be overloaded
# Return fully formatted data
# arbitrary convention used in gyroflow for no reason
# x axis: points to the right. positive equals pitch up (objects in frame move down)
# y axis: points up. positive equals pan left (objects move right)
# z axis: points away from lens. positive equals CCW rotation (objects moves CW)
# note that measured gravity vector points upwards when stationary due to equivalence to upwards acceleration
# These are the "raw, untransformed" values
self.gyro = None
self.acc = None
self.num_data_points = 0
self.gyro_sample_rate = 1
# True if successful
return True
def extract_log(self, filename, check_file_exist= True):
if os.path.isfile(filename) or (not check_file_exist):
self.extracted = self.extract_log_internal(filename)
if self.extracted:
self.filename = filename
if type(self.gyro) != type(None):
self.num_data_points = self.gyro.shape[0]
if self.num_data_points < 20:
print("Not enough datapoints")
return False
self.gyro_sample_rate = self.num_data_points / (self.gyro[-1,0] - self.gyro[0,0])
self.standard_gyro = np.copy(self.gyro)
if self.pre_filter > 0:
sosgyro = signal.butter(1, self.pre_filter, "lowpass", fs=self.gyro_sample_rate, output="sos")
self.standard_gyro[:,1:4] = signal.sosfiltfilt(sosgyro, self.gyro[:,1:4], 0) # Filter along "vertical" time axis
self.apply_variant_rotation_in_place(self.standard_gyro)
if type(self.acc) != type(None):
self.standard_acc = np.copy(self.acc)
self.apply_variant_rotation_in_place(self.standard_acc)
# valid range: 0.9 to 1.1 g
return self.extracted
else:
logging.error("Gyro file doesn't exist")
return False
def get_transformed_gyro(self):
if self.extracted:
return self.standard_gyro
return None
def get_transformed_acc(self):
if self.extracted:
return self.standard_acc
return None
def get_gyro(self):
if self.extracted:
return self.gyro
return None
def get_acc(self):
if self.extracted and self.has_acc:
return self.acc
return None
def apply_rotation(self, rotmat, time_data):
# Applies in place
time_data[:,1:] = time_data[:,1:].dot(rotmat.T)
def apply_variant_rotation_in_place(self, time_data):
# Transform to standard first
print(self.name)
if self.variants[self.variant][0] == 0:
pass # identity
else:
# apply in place
self.apply_rotation(self.get_variant_rotmat(), time_data)
# handle tilt
if self.angle_setting: # not zero
self.apply_rotation(generate_uptilt_mat(self.angle_setting), time_data)
def apply_inverse_rotation(self, rotmat):
mat = np.linalg.inv(rotmat)
pass
def plot_gyro(self, blocking=False):
xplot = plt.subplot(321)
plt.plot(self.standard_gyro[:,0], self.standard_gyro[:,1])
plt.ylabel("omega x [rad/s]")
plt.grid()
plt.subplot(323, sharex=xplot)
plt.plot(self.standard_gyro[:,0], self.standard_gyro[:,2])
plt.ylabel("omega y [rad/s]")
plt.grid()
plt.subplot(325, sharex=xplot)
plt.plot(self.standard_gyro[:,0], self.standard_gyro[:,3])
#plt.plot(self.integrator.get_raw_data("t") + d2, self.integrator.get_raw_data("z"))
plt.xlabel("time [s]")
plt.ylabel("omega z [rad/s]")
plt.grid()
#plt.show(block=blocking)
#plt.figure()
xplot = plt.subplot(222)
N = self.standard_gyro.shape[0]
T = (self.standard_gyro[-1,0] - self.standard_gyro[0,0]) / N
freq = 1/T
x = self.standard_gyro[:,0]
y = self.standard_gyro[:,1]
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
alpha = 0.7
f, Pxx_den = signal.welch(y, freq, nperseg=1024)
plt.plot(f, Pxx_den)
plt.legend("x")
y = self.standard_gyro[:,2]
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
f, Pxx_den = signal.welch(y, freq, nperseg=1024)
plt.plot(f, Pxx_den)
plt.legend("y")
y = self.standard_gyro[:,3]
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
f, Pxx_den = signal.welch(y, freq, nperseg=1024)
plt.plot(f, Pxx_den)
plt.legend(["x", "y", "z"])
plt.grid()
plt.ylabel("Power density")
plt.subplot(224, sharex=xplot)
y = self.standard_gyro[:,1]
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]), alpha=alpha)
plt.legend("x")
y = self.standard_gyro[:,2]
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]), alpha=alpha)
plt.legend("y")
y = self.standard_gyro[:,3]
yf = fft(y)
xf = fftfreq(N, T)[:N//2]
plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]), alpha=alpha)
plt.legend(["x", "y", "z"])
plt.grid()
plt.ylabel("FFT")
plt.xlabel("Frequency [Hz]")
plt.show(block=blocking)
def plot_acc(self):
if type(self.acc) != type(None):
xplot = plt.subplot(411)
plt.plot(self.standard_acc[:,0], self.standard_acc[:,1])
plt.ylabel("acc x [g]")
plt.subplot(412, sharex=xplot)
plt.plot(self.standard_acc[:,0], self.standard_acc[:,2])
plt.ylabel("acc y [g]")
plt.subplot(413, sharex=xplot)
plt.plot(self.standard_acc[:,0], self.standard_acc[:,3])
#plt.plot(self.integrator.get_raw_data("t") + d2, self.integrator.get_raw_data("z"))
plt.xlabel("time [s]")
plt.ylabel("acc z [g]")
plt.subplot(414, sharex=xplot)
plt.plot(self.standard_acc[:,0], np.sqrt(np.sum(self.standard_acc[:,1:]**2,1)))
plt.plot([0, self.standard_acc[-1,0]], [1.1,1.1])
plt.plot([0, self.standard_acc[-1,0]], [0.9,0.9])
#plt.plot(self.integrator.get_raw_data("t") + d2, self.integrator.get_raw_data("z"))
plt.xlabel("time [s]")
plt.ylabel("mag [g]")
plt.show()
def save_gyroflow_format(self, filename=False):
if not filename:
filename = self.filename + ".gcsv"
has_gyro = type(self.gyro) != type(None)
has_acc = type(self.acc) != type(None)
if not has_gyro:
return False
if has_acc:
if self.gyro.shape != self.acc.shape:
print(self.gyro.shape, self.acc.shape)
print("Gyro and acc are not the same shape")
return False
with open(filename, "w") as f:
# GYROFLOW IMU LOG
# tscale,0.001
# gscale,0.0002663161
# ascale,0.00059875488
# t,gx,gy,gz,ax,ay,az
# 0,39,86,183,-1137,-15689,-29
f.write("GYROFLOW IMU LOG\n")
f.write("tscale,1\n") # time in seconds
f.write("gscale,1\n") # gyro in rad/s
f.write("ascale,1\n") # acceleration in g
f.write("t,gx,gy,gz,ax,ay,az" if has_acc else "t,gx,gy,gz\n")
for i in range(self.gyro.shape[0]):
line = list(self.gyro[i,1:])
if has_acc:
line += list(self.acc[i,1:]) # don't add time
# round time to tenth of millisecond
# 4 significant digits in data
line = [str(round(self.gyro[i,0], 4))] + [f"{n:.4g}" for n in line]
f.write(",".join(line) + "\n")
return True
class BlackboxCSVData(GyrologReader):
def __init__(self):
super().__init__("Blackbox CSV file")
self.filename_pattern = "(?i).*\.csv"
self.angle_setting = 0
self.variants = {
"default": [12], # dict entry with correction matrix ID from ORIENTATIONS
"Raw gyro (debug_mode = GYRO_SCALED)": [12],
"iNav/blackbox-tools": [12]
}
self.variant = "default"
self.default_search_size = 10
self.post_init()
def check_log_type(self, filename):
fname = os.path.split(filename)[-1]
if self.filename_matches(fname):
# open and check first line
with open(filename, "r") as f:
firstline = f.readline().strip()
if firstline == '"Product","Blackbox flight data recorder by Nicholas Sherlock"':
return True
elif firstline.startswith('loopIteration,time (us),'):
# File generated by https://github.com/iNavFlight/blackbox-tools
self.set_variant("iNav/blackbox-tools")
return True
return False
def guess_log_from_videofile(self, videofile):
no_suffix = os.path.splitext(videofile)[0]
#path, fname = os.path.split(videofile)
log_suffixes = [".bbl.csv", ".bfl.csv", ".csv"]
log_suffixes += [ex.upper() for ex in log_suffixes]
for suffix in log_suffixes:
if os.path.isfile(no_suffix + suffix):
logpath = no_suffix + suffix
#print("Automatically detected gyro log file: {}".format(logpath.split("/")[-1]))
if self.check_log_type(logpath):
return logpath
return False
def extract_log_internal(self, filename):
with open(filename) as bblcsv:
gyro_index = None
acc_index = None
max_index = 0
csv_reader = csv.reader(bblcsv)
for i, row in enumerate(csv_reader):
#print(row)
stripped_row = [field.strip() for field in row]
if stripped_row[0] == "loopIteration":
if self.variant == "Raw gyro (debug_mode = GYRO_SCALED)" and 'debug[0]' in stripped_row:
gyro_index = stripped_row.index('debug[0]')
print('Using raw gyro data')
else:
gyro_index = stripped_row.index('gyroADC[0]')
#print('Using filtered gyro data')
max_index = gyro_index + 2
if "accSmooth[0]" in stripped_row:
acc_index = stripped_row.index("accSmooth[0]")
max_index = acc_index + 2
break
data_list = []
acc_list = []
gyroscale = np.pi/180
acc_scale = 1/2048
last_t = 0
self.max_data_gab = 10
for row in csv_reader:
t = float(row[1])
if max_index<len(row) and (((0 < (t - last_t) < 1000000 * self.max_data_gab) or (last_t == 0))) :
gx = float(row[gyro_index+1])
gy = float(row[gyro_index+2])
gz = float(row[gyro_index])
last_t = t
#data_list.append(f)
data_list.append([t / 1000000, gx, gy, gz])
if acc_index:
ax = float(row[acc_index+1])
ay = float(row[acc_index+2])
az = float(row[acc_index])
acc_list.append([t / 1000000, ax, ay, az])
self.gyro = np.array(data_list)
self.gyro[:,1:] *= gyroscale
if acc_index:
self.acc = np.array(acc_list)
self.acc[:,1:] *= acc_scale
return True
class BlackboxRawData(GyrologReader):
def __init__(self):
super().__init__("Blackbox raw file")
self.filename_pattern = "(?i).*\.(?:bbl|bfl|txt)"
self.angle_setting = 0
self.variants = {
"default": [12] # dict entry with correction matrix ID from ORIENTATIONS
}
self.variant = "default"
self.default_filter = -1
self.default_search_size = 10
self.post_init()
def check_log_type(self, filename):
fname = os.path.split(filename)[-1]
if self.filename_matches(fname):
# open and check first line
with open(filename, "rb") as f:
firstline = f.read(64)
try:
firstline = firstline.decode('ascii').split("\n")[0]
if "Product:Blackbox flight data recorder by Nicholas Sherlock" in firstline:
return True
return False
except:
return False
return False
def guess_log_from_videofile(self, videofile):
no_suffix = os.path.splitext(videofile)[0]
#path, fname = os.path.split(videofile)
log_suffixes = [".bbl", ".bfl", ".txt"] # txt is inav blackbox
log_suffixes += [ex.upper() for ex in log_suffixes]
for suffix in log_suffixes:
if os.path.isfile(no_suffix + suffix):
logpath = no_suffix + suffix
#print("Automatically detected gyro log file: {}".format(logpath.split("/")[-1]))
if self.check_log_type(logpath):
return logpath
return False
def extract_log_internal(self, filename):
try:
bbe = BlackboxExtractor(filename)
self.gyro, self.acc = bbe.get_untransformed_imu_data()
return True
except: # TODO: change
print("Error reading raw blackbox file. Try converting to CSV in blackbox explorer")
return False
class RuncamData(GyrologReader):
def __init__(self):
super().__init__("Runcam CSV log")
self.filename_pattern = ".*\.csv"
self.variants = {
"Runcam 5 Orange": [0],
"iFlight GOCam GR": [0]
}
self.variant = "Runcam 5 Orange"
self.default_filter = 70
self.default_search_size = 4 # usually within +/- 1 second
self.post_init()
def check_log_type(self, filename):
fname = os.path.split(filename)[-1]
firstlines = ["time,x,y,z,ax,ay,az", "time,rx,ry,rz,ax,ay,az", "time,x,y,z"] # Different firmware versions
if self.filename_matches(fname):
# open and check first line
with open(filename, "r") as f:
firstline = f.readline().strip()
#print(firstline)
if firstline in firstlines:
return True
return False
def guess_log_from_videofile(self, videofile):
path, fname = os.path.split(videofile)
# Runcam 5 Orange
rc5pattern = re.compile("RC_(\d{4})_.*\..*") # example: RC_0030_210719221659.MP4
gocampattern = re.compile("IF-RC01_(\d{4})\..*") # example: IF-RC01_0011.MP4
if rc5pattern.match(fname):
self.variant = "Runcam 5 Orange"
counter = int(rc5pattern.match(fname).group(1))
# Gocam
elif gocampattern.match(fname):
self.variant = "iFlight GOCam GR"
counter = int(gocampattern.match(fname).group(1))
else:
return False
lognames = [f"RC_GyroData{counter:04d}.csv", f"gyroDate{counter:04d}.csv"] # different firmwares
for logname in lognames:
logpath = videofile.rstrip(fname) + logname
print(logpath)
if os.path.isfile(logpath):
if self.check_log_type(logpath):
return logpath
return False
def extract_log_internal(self, filename):
with open(filename) as csvfile:
next(csvfile)
lines = csvfile.readlines()
has_acc = len(lines[0].split(",")) == 7
data_list = []
acc_list = []
#gyroscale = 0.070 * np.pi/180 # plus minus 2000 dps 16 bit two's complement. 70 mdps/LSB per datasheet.
gyroscale = 500 / 2**15 * np.pi/180 # 500 dps
acc_scale = 2 / 2**15 # +/- 2 g
for line in lines:
splitdata = [float(x) for x in line.split(",")]
t = splitdata[0]/1000
# RC5
if self.variant=="Runcam 5 Orange":
gx = splitdata[3] * gyroscale
gy = -splitdata[1] * gyroscale
gz = splitdata[2] * gyroscale
elif self.variant == "iFlight GOCam GR":
gx = -splitdata[3] * gyroscale
gy = -splitdata[1] * gyroscale
gz = -splitdata[2] * gyroscale
if has_acc:
if self.variant=="Runcam 5 Orange":
ax = -splitdata[4] * acc_scale
ay = -splitdata[5] * acc_scale
az = splitdata[6] * acc_scale
elif self.variant == "iFlight GOCam GR":
ax = -splitdata[4] * acc_scale
ay = splitdata[5] * acc_scale
az = -splitdata[6] * acc_scale
acc_list.append([t, ax, ay, az])
# accelerometer
# Z: roll
# X: yaw
# y: pitch
data_list.append([t, gx, gy, gz])
self.gyro = np.array(data_list)
#sosgyro = signal.butter(1, 8, "lowpass", fs=500, output="sos")
#self.gyro[:,1:4] = signal.sosfiltfilt(sosgyro, self.gyro[:,1:4], 0) # Filter along "vertical" time axis
if has_acc:
self.acc = np.array(acc_list)
return True
class Insta360Log(GyrologReader):
def __init__(self):
super().__init__("Insta360 IMU metadata")
self.filename_pattern = "(?i).*\.mp4"
self.variants = {
"smo4k": [22],
"insta360 oner": [22]
}
self.variant = "smo4k"
self.default_filter = 50
self.default_search_size = 10
self.post_init()
def check_log_type(self, filename):
if self.filename_matches(filename):
return insta360_util.isInsta360Video(filename)
return False
def guess_log_from_videofile(self, videofile):
if self.check_log_type(videofile):
return videofile
else:
return False
def extract_log_internal(self, filename):
if self.variant=="smo4k":
self.gyro, self.acc = insta360_util.get_insta360_gyro_data(filename, filterArray=[])
elif self.variant=="insta360 oner":
self.gyro, self.acc = insta360_util.get_insta360_gyro_data(filename, filterArray=[], revertIMU=False)
else:
# Assume SMO4K - For no real reason....
self.gyro, self.acc = insta360_util.get_insta360_gyro_data(filename, filterArray=[])
# Coverting gyro to XYZ to -Z,-X,Y
#self.gyro = np.empty([len(gyro_data_input), 4])
#self.gyro[:,0] = gyro_data_input[:,0][:]
#self.gyro[:,1] = gyro_data_input[:,2][:] * -1
#self.gyro[:,2] = gyro_data_input[:,3][:]
#self.gyro[:,3] = gyro_data_input[:,1][:] * -1
return True
class GPMFLog(GyrologReader):
def __init__(self):
super().__init__("GoPro GPMF metadata")
self.filename_pattern = "(?i).*\.mp4"
self.variants = {
"hero5": [13],
"hero6": [0],
"hero7": [0],
"hero8": [1],
"hero9": [13]
}
self.variant = "hero6"
self.default_filter = -1
self.default_search_size = 4
self.gpmf = None
self.post_init()
def check_log_type(self, filename):
#gyro_data = gpmf.get_gyro(True)
if self.filename_matches(filename):
try:
self.gpmf = GPMFExtractor(filename)
return True
except:
# Error if it doesn't contain GPMF data
return False
return False
def guess_log_from_videofile(self, videofile):
if self.check_log_type(videofile):
return videofile
else:
return False
def extract_log_internal(self, filename):
try:
if self.gpmf:
if self.gpmf.videopath == filename:
pass
else:
self.gpmf = GPMFExtractor(filename)
else:
self.gpmf = GPMFExtractor(filename)
self.gyro = self.gpmf.get_gyro(True)
self.gpmf.parse_accl()
self.acc = self.gpmf.get_accl(True)
minlength = min(self.gyro.shape[0], self.acc.shape[0])
maxlength = max(self.gyro.shape[0], self.acc.shape[0])
# Make sure they match
if maxlength - minlength == 0: #
pass
elif maxlength - minlength < 10:
# probably just some missing datapoints
self.gyro = self.gyro[0:minlength]
self.acc = self.acc[0:minlength]
self.acc[:,0] = self.gyro[:,0] # same timescale, acceleration less time-sensitive
else:
to_interp = interpolate.interp1d(self.acc[:,0], self.acc[:,1:], axis=0,fill_value=np.array([0,1,0]), bounds_error=False)
new_acc = np.copy(self.gyro)
new_acc[:,1:] = to_interp(self.gyro[:,0])
self.acc = new_acc
# resample acc to gyro timescale
except Exception as e:
print(e)
print("Failed to extract GPMF gyro")
return False
hero = int(self.variant.lstrip("hero"))
# Hero 6??
if hero == 6:
pass
# Identity
#self.gyro[:,1] = self.gyro[:,1]
#self.gyro[:,2] = self.gyro[:,2]
#self.gyro[:,3] = self.gyro[:,3]
elif hero == 7:
pass
#self.gyro[:,1] = self.gyro[:,1]
#self.gyro[:,2] = self.gyro[:,2]
#self.gyro[:,3] = self.gyro[:,3]
elif hero == 5:
pass
# equivalent to matrix index 13
#self.gyro[:,1] = -self.gyro[:,1]
#self.gyro[:,2] = self.gyro[:,2]
#self.gyro[:,3] = self.gyro[:,3]
#self.gyro[:,[2, 3]] = self.gyro[:,[3, 2]]
elif hero == 8:
pass
# Hero 8??
# equal matrix index 1
#self.gyro[:,[2, 3]] = self.gyro[:,[3, 2]]