Skip to content

Latest commit

 

History

History
48 lines (26 loc) · 2.63 KB

分布式id生成算法SnowFlake.md

File metadata and controls

48 lines (26 loc) · 2.63 KB

分布式id生成算法 - SnowFlake

概述

分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的, 由于采用的是无意义的字符串,推测会在数据量增大时造成访问过慢,在基础互联网的系统设计中都不推荐采用。 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。

而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。

自增ID的方法虽然比较适合大数据量的场景,当时由于自增ID是按照顺序增加的,数据记录都是可以根据ID号进行推测出来,对于一些数据敏感的场景,不建议采用。

Snowflake 算法核心

时间戳工作机器id序列号 组合在一起。

snowflake的结构如下(每部分用-分开):

Alt text

  • 1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0

  • 41位,用来记录时间戳(毫秒)。

    • 41位可以表示$2^{41}-1$个数字,

    • 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 $2^{41}-1$,减1是因为可表示的数值范围是从0开始算的,而不是1。

    • 也就是说41位可以表示$2^{41}-1$个毫秒的值,转化成单位年则是$(2^{41}-1) / (1000 * 60 * 60 * 24 * 365) = 69$年

  • 10位,用来记录工作机器id。

    • 可以部署在$2^{10} = 1024$个节点,包括5位datacenterId和5位workerId

    • 5位(bit)可以表示的最大正整数是$2^{5}-1 = 31$,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

  • 12位,序列号,用来记录同毫秒内产生的不同id。

    • 12位(bit)可以表示的最大正整数是$2^{12}-1 = 4095$,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

感谢

twitter开源项目 - Scala版

pysnowflake - Python版

理解分布式id生成算法SnowFlake

64位自增ID算法详解