|
| 1 | +## [Memory-augmented Online Video Anomaly Detection (MOVAD)](https://arxiv.org/abs/2302.10719) |
| 2 | + |
| 3 | +Official PyTorch implementation of **MOVAD**. |
| 4 | + |
| 5 | +We propose **MOVAD**, a brand new architecture for online (frame-level) video |
| 6 | +anomaly detection. |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | +Authors: Leonardo Rossi, Vittorio Bernuzzi, Tomaso Fontanini, |
| 11 | + Massimo Bertozzi, Andrea Prati. |
| 12 | + |
| 13 | +[IMP Lab](http://implab.ce.unipr.it/) - |
| 14 | +Dipartimento di Ingegneria e Architettura |
| 15 | + |
| 16 | +University of Parma, Italy |
| 17 | + |
| 18 | + |
| 19 | +## Abstract |
| 20 | + |
| 21 | +The ability to understand the surrounding scene is of paramount importance |
| 22 | +for Autonomous Vehicles (AVs). |
| 23 | + |
| 24 | +This paper presents a system capable to work in a real time guaranteed |
| 25 | +response times and online fashion, giving an immediate response to the arise |
| 26 | +of anomalies surrounding the AV, exploiting only the videos captured by a |
| 27 | +dash-mounted camera. |
| 28 | + |
| 29 | +Our architecture, called MOVAD, relies on two main modules: |
| 30 | +a short-term memory to extract information related to the ongoing action, |
| 31 | +implemented by a Video Swin Transformer adapted to work in an online scenario, |
| 32 | +and a long-term memory module that considers also remote past information |
| 33 | +thanks to the use of a Long-Short Term Memory (LSTM) network. |
| 34 | + |
| 35 | +We evaluated the performance of our method on Detection of Traffic Anomaly |
| 36 | +(DoTA) dataset, a challenging collection of dash-mounted camera videos of |
| 37 | +accidents. |
| 38 | + |
| 39 | +After an extensive ablation study, MOVAD is able to reach an AUC score of |
| 40 | +82.11%, surpassing the current state-of-the-art by +2.81 AUC. |
| 41 | + |
| 42 | + |
| 43 | +## Usage |
| 44 | + |
| 45 | +### Installation |
| 46 | +```bash |
| 47 | +$ git clone https://github.com/IMPLabUniPr/movad/tree/icip |
| 48 | +$ cd movad |
| 49 | +$ wget https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window1677_sthv2.pth -O pretrained/swin_base_patch244_window1677_sthv2.pth |
| 50 | +$ conda env create -n movad_env --file environment.yml |
| 51 | +$ conda activate movad_env |
| 52 | +``` |
| 53 | + |
| 54 | +# Download DoTa dataset |
| 55 | + |
| 56 | +Please download from [official website](https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly) |
| 57 | +the dataset and save inside `data/dota` directory. |
| 58 | + |
| 59 | +You should obtain the following structure: |
| 60 | + |
| 61 | +``` |
| 62 | +data/dota |
| 63 | +├── annotations |
| 64 | +│ ├── 0qfbmt4G8Rw_000306.json |
| 65 | +│ ├── 0qfbmt4G8Rw_000435.json |
| 66 | +│ ├── 0qfbmt4G8Rw_000602.json |
| 67 | +│ ... |
| 68 | +├── frames |
| 69 | +│ ├── 0qfbmt4G8Rw_000072 |
| 70 | +│ ├── 0qfbmt4G8Rw_000306 |
| 71 | +│ ├── 0qfbmt4G8Rw_000435 |
| 72 | +│ .... |
| 73 | +└── metadata |
| 74 | + ├── metadata_train.json |
| 75 | + ├── metadata_val.json |
| 76 | + ├── train_split.txt |
| 77 | + └── val_split.txt |
| 78 | +``` |
| 79 | + |
| 80 | +### Train |
| 81 | +```bash |
| 82 | +python main.py --config cfgs/v1_1.yml --output output/v1_1/ --phase train --epochs 100 --epoch -1 |
| 83 | +``` |
| 84 | + |
| 85 | +### Eval |
| 86 | +```bash |
| 87 | +python main.py --config cfgs/v1_1.yml --output output/v1_1/ --phase test --epoch 10 |
| 88 | +``` |
| 89 | + |
| 90 | +### Play: generate video |
| 91 | +```bash |
| 92 | +python main.py --config cfgs/v1_1.yml --output output/v1_1/ --phase play --epoch 100 |
| 93 | +``` |
| 94 | + |
| 95 | +## Results |
| 96 | + |
| 97 | +### Table 1 |
| 98 | + |
| 99 | +Memory modules effectiveness. |
| 100 | + |
| 101 | +| # | Short-term | Long-term | AUC | Conf | |
| 102 | +|:---:|:---:|:---:|:---:|:---:| |
| 103 | +| 1 | | | 66.53 | [conf](cfgs/v0_1.yml) | |
| 104 | +| 2 | X | | 74.46 | [conf](cfgs/v2_3.yml) | |
| 105 | +| 3 | | X | 68.76 | [conf](cfgs/v1_1.yml) | |
| 106 | +| 4 | X | X | 79.21 | [conf](cfgs/v1_3.yml) | |
| 107 | + |
| 108 | +### Figure 2 |
| 109 | + |
| 110 | +Short-term memory module. |
| 111 | + |
| 112 | +| Name | Conf | |
| 113 | +|:---:|:---:| |
| 114 | +| NF 1 | [conf](cfgs/v1_1.yml) | |
| 115 | +| NF 2 | [conf](cfgs/v1_2.yml) | |
| 116 | +| NF 3 | [conf](cfgs/v1_3.yml) | |
| 117 | +| NF 4 | [conf](cfgs/v1_4.yml) | |
| 118 | +| NF 5 | [conf](cfgs/v1_5.yml) | |
| 119 | + |
| 120 | +### Figure 3 |
| 121 | + |
| 122 | +Long-term memory module. |
| 123 | + |
| 124 | +| Name | Conf | |
| 125 | +|:---:|:---:| |
| 126 | +| w/out LSTM | [conf](cfgs/v2_1.yml) | |
| 127 | +| LSTM (1 cell) | [conf](cfgs/v2_2.yml) | |
| 128 | +| LSTM (2 cells) | [conf](cfgs/v1_3.yml) | |
| 129 | +| LSTM (3 cells) | [conf](cfgs/v2_3.yml) | |
| 130 | +| LSTM (4 cells) | [conf](cfgs/v2_4.yml) | |
| 131 | + |
| 132 | +### Figure 4 |
| 133 | + |
| 134 | +Video clip length (VCL). |
| 135 | + |
| 136 | +| Name | Conf | |
| 137 | +|:---:|:---:| |
| 138 | +| 4 frames | [conf](cfgs/v3_1.yml) | |
| 139 | +| 8 frames | [conf](cfgs/v1_3.yml) | |
| 140 | +| 12 frames | [conf](cfgs/v3_2.yml) | |
| 141 | +| 16 frames | [conf](cfgs/v3_3.yml) | |
| 142 | + |
| 143 | +### Table 2 |
| 144 | + |
| 145 | +Comparison with the state of the art. |
| 146 | + |
| 147 | +| # | Method | Input | AUC | Conf | |
| 148 | +|:---:|:---:|:---:|:---:|:---:| |
| 149 | +| 9 | Our (MOVAD) | RGB (320x240) | 80.11 | [conf](cfgs/v4_1.yml) | |
| 150 | +| 10 | Our (MOVAD) | RGB (640x480) | 82.11 | [conf](cfgs/v4_2.yml) | |
| 151 | + |
| 152 | +## License |
| 153 | + |
| 154 | +See [GPL v2](./LICENSE) License. |
| 155 | + |
| 156 | +## Acknowledgement |
| 157 | + |
| 158 | +This research benefits from the HPC (High Performance Computing) facility |
| 159 | +of the University of Parma, Italy. |
| 160 | + |
| 161 | +## Citation |
| 162 | +If you find our work useful in your research, please cite: |
| 163 | + |
| 164 | +``` |
| 165 | +@misc{https://doi.org/10.48550/arxiv.2302.10719, |
| 166 | + doi = {10.48550/ARXIV.2302.10719}, |
| 167 | + url = {https://arxiv.org/abs/2302.10719}, |
| 168 | + author = {Rossi, Leonardo and Bernuzzi, Vittorio and Fontanini, Tomaso and Bertozzi, Massimo and Prati, Andrea}, |
| 169 | + keywords = {Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, F.1.1, 68-02, 68-04, 68-06, 68T07, 68T10, 68T45}, |
| 170 | + title = {Memory-augmented Online Video Anomaly Detection}, |
| 171 | + publisher = {arXiv}, |
| 172 | + year = {2023}, |
| 173 | + copyright = {Creative Commons Attribution Share Alike 4.0 International} |
| 174 | +} |
| 175 | +``` |
0 commit comments