-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathpaper.py
executable file
·138 lines (127 loc) · 5.3 KB
/
paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Main file for generating results in the paper:
Clustering and compositionality of task representations
in a neural network trained to perform many cognitive tasks
Yang GR et al. 2017 BioRxiv
"""
from __future__ import absolute_import
import tools
from analysis import performance
from analysis import standard_analysis
from analysis import clustering
from analysis import variance
from analysis import taskset
from analysis import varyhp
from analysis import data_analysis
from analysis import contextdm_analysis
from analysis import posttrain_analysis
# Directories of the models and the sample model
# Change these to your directories
# root_dir = './data/tanhgru'
root_dir = './data/train_all'
model_dir = root_dir + '/1'
# # Performance Analysis-----------------------------------------------------
# standard_analysis.schematic_plot(model_dir=model_dir)
# performance.plot_performanceprogress(model_dir)
# performance.psychometric_choice(model_dir) # Psychometric for dm
# performance.psychometric_choiceattend(model_dir, no_ylabel=True)
# performance.psychometric_choiceint(model_dir, no_ylabel=True)
#
# for rule in ['dm1', 'contextdm1', 'multidm']:
# performance.plot_choicefamily_varytime(model_dir, rule)
# performance.psychometric_delaychoice_varytime(model_dir, 'delaydm1')
#
#
# # Clustering Analysis------------------------------------------------------
model_dir = root_dir + '/1'
# CA = clustering.Analysis(model_dir, data_type='rule')
# CA.plot_example_unit()
# CA.plot_cluster_score()
# CA.plot_variance()
# CA.plot_2Dvisualization('PCA')
# CA.plot_2Dvisualization('MDS')
# CA.plot_2Dvisualization('tSNE')
# CA.plot_lesions()
# CA.plot_connectivity_byclusters()
#
#
CA = clustering.Analysis(model_dir, data_type='epoch')
CA.plot_variance()
# CA.plot_2Dvisualization('tSNE')
#
#
# # Varying hyperparameter analysis------------------------------------------
# varyhp_root_dir = './data/varyhp'
# n_clusters, hp_list = varyhp.get_n_clusters(varyhp_root_dir)
# varyhp.plot_n_clusters(n_clusters, hp_list)
# varyhp.plot_n_cluster_hist(n_clusters, hp_list)
#
#
# # FTV Analysis-------------------------------------------------------------
# variance.plot_hist_varprop_selection(root_dir)
# variance.plot_hist_varprop_selection('./data/tanhgru')
# variance.plot_hist_varprop_all(root_dir, plot_control=True)
#
#
# # ContextDM analysis-------------------------------------------------------
# ua = contextdm_analysis.UnitAnalysis(model_dir)
# ua.plot_inout_connections()
# ua.plot_rec_connections()
# ua.plot_rule_connections()
# ua.prettyplot_hist_varprop()
#
# contextdm_analysis.plot_performance_choicetasks(model_dir, grouping='var')
# contextdm_analysis.plot_performance_2D_all(model_dir, 'contextdm1')
#
#
# # Task Representation------------------------------------------------------
# tsa = taskset.TaskSetAnalysis(model_dir)
# tsa.compute_and_plot_taskspace(epochs=['stim1'], dim_reduction_type='PCA')
#
#
# # Compositional Representation---------------------------------------------
# setups = [1, 2, 3]
# for setup in setups:
# taskset.plot_taskspace_group(root_dir, setup=setup,
# restore=True, representation='rate')
# taskset.plot_taskspace_group(root_dir, setup=setup,
# restore=True, representation='weight')
# taskset.plot_replacerule_performance_group(
# root_dir, setup=setup, restore=True)
# name = 'tanhgru'
# name = 'mixrule'
# name = 'mixrule_softplus'
# setups = [1, 2]
# d = './data/' + name
# for setup in setups:
# taskset.plot_taskspace_group(d, setup=setup,
# restore=False, representation='rate',
# fig_name_addon=name)
# taskset.plot_taskspace_group(d, setup=setup,
# restore=True, representation='weight',
# fig_name_addon=name)
# taskset.plot_replacerule_performance_group(
# d, setup=setup, restore=False, fig_name_addon=name)
## Continual Learning Analysis----------------------------------------------
# hp_target0 = {'c_intsyn': 0, 'ksi_intsyn': 0.01,
# 'activation': 'relu', 'max_steps': 4e5}
# hp_target1 = {'c_intsyn': 1, 'ksi_intsyn': 0.01,
# 'activation': 'relu', 'max_steps': 4e5}
# model_dirs0 = tools.find_all_models('data/seq/', hp_target0)
# model_dirs1 = tools.find_all_models('data/seq/', hp_target1)
# model_dirs0 = tools.select_by_perf(model_dirs0, perf_min=0.8)
# model_dirs1 = tools.select_by_perf(model_dirs1, perf_min=0.8)
# performance.plot_performanceprogress_cont((model_dirs0[0], model_dirs1[2]))
# performance.plot_finalperformance_cont(model_dirs0, model_dirs1)
# data_analysis.plot_fracvar_hist_byhp(hp_vary='c_intsyn', mode='all_var', legend=False)
# data_analysis.plot_fracvar_hist_byhp(hp_vary='p_weight_train', mode='all_var')
## Data analysis------------------------------------------------------------
# Note that these wouldn't work without the data file
# data_analysis.plot_all('mante_single_ar')
# data_analysis.plot_all('mante_single_fe')
# data_analysis.plot_all('mante_ar')
# data_analysis.plot_all('mante_fe')
## Post-training of pre-trained networks------------------------------------
# for posttrain_setup in range(2):
# for trainables in ['all', 'rule']:
# posttrain_analysis.plot_posttrain_performance(posttrain_setup, trainables)