-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathserver.R
executable file
·226 lines (197 loc) · 8.5 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
##Loading the libraries
library(shiny)
library(poppr)
library(ape)
library(igraph)
#####################################################
# IMPORTANT: ALl the functions written before line 68 refer to functions loaded by R
# before shiny is deployed and executes the custom functions. These functions are definitions of
# global functions and variables. Make sure to add these kinds of functions here. For more information
# refer ro the shiny manual.
####################################################
########### MICROBE-ID customization ############
# Here's where you add your database file (Comma Separated Object). Make sure
# that the database is in the same folder than this file (server.R)
df <- read.table("Aeut.txt", header = TRUE, sep = "\t")
# Transforming the dataframe into a matrix
df.m <- as.matrix(df)
########### MICROBE-ID customization ############
# This line creates a function to obtain the genetic distances and add
# them in a switch (evaluates EXPR and accordingly chooses one of the further arguments )
# for easly post-hoc handling
get_dist_fun <- function(dist){
switch(dist,
nei = 'nei.dist',
edwards = 'edwards.dist',
rogers = 'rogers.dist',
reynolds = 'reynolds.dist',
provesti = 'provesti.dist')
}
# Functions to create elements to plot:
## 1. Distance Tree
plot.tree <- function (tree, type = input$tree, ...){
ARGS <- c("nj", "upgma")
type <- match.arg(type, ARGS)
barlen <- min(median(tree$edge.length), 0.1)
if (barlen < 0.1)
barlen <- 0.01
plot.phylo(tree, cex = 0.8, font = 2, adj = 0, xpd = TRUE,
label.offset = 0.0125, ...)
nodelabels(tree$node.label, adj = c(1.3, -0.5), frame = "n",
cex = 0.8, font = 3, xpd = TRUE)
if (type == "nj") {
add.scale.bar(lwd = 5, length = barlen)
tree <- ladderize(tree)
}
else {
axisPhylo(3)
}
}
## 2. Minimum spanning network
plot.minspan <- function(gen, mst, gadj=3, inds = "none", ...){
plot_poppr_msn(gen, mst, gadj = gadj, vertex.label.color = "firebrick", inds = inds,
vertex.label.font = 2, vertex.label.dist = 0.5, nodelab = 100,
quantiles = FALSE)
}
########### MICROBE-ID customization ############
# From this line on, every one of the functions is going to be used by shiny in a reactive way. All modifications
# of processes and outputs for the User interface file (in this case, the www/index.html) are found here.
#
# INPUT FROM index.html: All variables that start with index$...
# OUTPUT TO index.html: All variables that start with output$...
#
# To determine which variable communicates with whic <div> in the index.html file, search for the line with the
# class=shiny*.(e.g. The input$table variable is gonna be filled with info from the <div class="shiny-bound-input" id="table">.
#
# For more information refer to the shiny manual
shinyServer(function(input, output) {
data.genoid <- reactive({
if (gsub("\\s", "", input$table) == ""){
return(NULL)
} else {
input_table <- read.table(text = input$table, stringsAsFactors = FALSE)
if (input_table[1,1] == "Ind" | input_table[1,2] == "Pop"){
input_table <- input_table[-1,]
}
colnames(input_table) <- colnames(df.m)
input_data.genoid <- input_table[[1]]
df.m <- rbind(df.m, input_table, deparse.level = 0)
df.m <- as.data.frame(df.m)
gen <- df2genind(df.m[, -c(1, 2)], ncode=1, ploid = 2, pop = df.m[, 2], type="PA", ind.names = df.m[, 1])
#Adding colors to the tip values according to the clonal lineage
gen$other$tipcolor <- pop(gen)
gen$other$input_data.genoid <- input_data.genoid
ngroups <- length(levels(gen$other$tipcolor))
########### MICROBE-ID customization ############
# Change these colors to represent the groups defined in your data.genoid set.
defined_groups <- c("blue", "darkolivegreen")
# Change heat.colors to whatever color palette you want to represent
# submitted data.genoid.
#
input_colors <- heat.colors(ngroups - length(defined_groups))
#
##################################
levels(gen$other$tipcolor) <- c(defined_groups, input_colors)
gen$other$tipcolor <- as.character(gen$other$tipcolor)
gen <- as.genclone(gen)
return(gen)
}
})
# Setting a random seed for the current session from the user interface (<input type = "number" name = "seed" id = "seed" value = "9449" min = "0" />)
seed <- reactive({
return(input$seed)
})
# Matching the distances from the user interface (<select id="distance" style="width:300px">)
distfun <- reactive({
get_dist_fun(input$distance)
})
# Greyscale slider settings from the user interface (<input id="integer" type="slider" name="integer" value="3" class="jslider" data-from="0" data-to="50" data-step="1" data-skin="plastic" data-round="FALSE" data-locale="us" data-format="#,##0.#####" data-smooth="FALSE"/>)
slider <- reactive({
slider.a <- (input$integer)
return(slider.a)
})
# Processing the results. The functions here create the figures to be displayed by the user interface.
# Distance tree with bootstrap
boottree <- reactive({
if (input$boot > 1000){
return(1000L)
} else if (input$boot < 10){
return(10L)
}
set.seed(seed())
DIST <- match.fun(distfun())
tree <- aboot(data.genoid(), distance = DIST, sample = input$boot, showtree=FALSE,
tree = input$tree, cutoff = 50)
if (input$tree=="nj"){
tree <- phangorn::midpoint(ladderize(tree))
}
tree$tip.label <- paste(tree$tip.label, as.character(pop(data.genoid())))
return(tree)
})
# Minimum spanning network
msnet <- reactive ({
DIST <- match.fun(distfun())
msn.plot <- poppr.msn(data.genoid(),distmat=DIST(data.genoid()),showplot=FALSE)
V(msn.plot$graph)$size <- 3
return(msn.plot)
})
############ MICROBE-ID customization ############
# The following lines of code communicate with the user interface to
# plot the outputs from the processes in the server script.
## Distance Tree (<div id="distPlotTree" class="span6 shiny-plot-output">)
output$distPlotTree <- renderPlot({
if (is.null(data.genoid())){
plot.new()
rect(0, 1, 1, 0.8, col = "indianred2", border = 'transparent' ) +
text(x = 0.5, y = 0.9, "No data genoid has been input.", cex = 1.6, col = "white")
} else if (is.integer(boottree())){
msg <- ifelse(boottree() > 10L, "\nless than or equal to 1000",
"greater than 10")
msg <- paste("The number of bootstrap replicates should be", msg)
plot.new()
rect(0, 1, 1, 0.8, col = "indianred2", border = 'transparent' ) +
text(x = 0.5, y = 0.9, msg, cex = 1.6, col = "white")
} else {
plot.tree(boottree(), type = input$tree, tip.col=as.character(unlist(data.genoid()$other$tipcolor)))
}
})
##Minimum Spanning Network (<div id="MinSpanTree" class="shiny-plot-output")
output$MinSpanTree <- renderPlot({
if (is.null(data.genoid())){
plot.new()
rect(0, 1, 1, 0.8, col = "indianred2", border = 'transparent' ) +
text(x = 0.5, y = 0.9, "No data has been input.", cex = 1.6, col = "white")
} else {
set.seed(seed())
plot.minspan(data.genoid(), msnet(), gadj = slider(), inds = data.genoid()$other$input_data.genoid)
}
})
############ MICROBE-ID customization ############
# The following lines of code communicate with the user interface to
# download the outputs from the processes in the server script.
## Distance tree in .tre format (<a id="downloadData" class="btn btn-primary shiny-download-link">")
output$downloadData <- downloadHandler(
filename = function() { paste0(input$tree, '.tre') },
content = function(file) {
write.tree(boottree(), file)
})
## Distance tree in PDF format ( <a id="downloadPdf" class="btn btn-info shiny-download-link">)
output$downloadPdf <- downloadHandler(
filename = function() { paste0(input$tree, '.pdf') },
content = function(file) {
pdf(file, width=11, height=8.5)
plot.tree(tree, tip.col=as.character(unlist(gen$other)))
dev.off()
})
## Minimum spanning network in PDF format (<a id="downloadPdfMst" class="btn btn-info shiny-download-link")
output$downloadPdfMst <- downloadHandler(
filename = function() { paste0("min_span_net", '.pdf')} ,
content = function(file) {
pdf(file, width=11, height=8.5)
set.seed(seed())
plot.minspan(data.genoid(),msnet())
dev.off()
}
)
#EOF
})