-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrossover.py
299 lines (227 loc) · 8.21 KB
/
crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import random
from population import Tour
from graph import Graph
import copy
def crossover_order(parent1: Tour, parent2: Tour) -> (Tour, Tour):
child1 = Tour()
child2 = Tour()
N = Graph.num_nodes
start_index = random.randint(0, N)
end_index = random.randint(0, N)
if start_index > end_index:
temp = start_index
start_index = end_index
end_index = temp
node_ids1 = []
node_ids2 = []
for i in range(start_index, end_index):
node1 = parent1.get_node(i)
node_ids1.append(node1.id)
node2 = parent2.get_node(i)
node_ids2.append(node2.id)
child1.add_node(i, node1)
child2.add_node(i, node2)
def binary_search(target, data):
data.sort()
start = 0
end = len(data) - 1
while start <= end:
mid = (start + end) // 2
if data[mid] == target:
return True
elif data[mid] < target:
start = mid + 1
else:
end = mid - 1
return False
remaining_indices = list(range(end_index, N)) + \
list(range(0, start_index))
offset1 = 0
offset2 = 0
indices = list(range(0, N))
cyclic_indices = indices[end_index:N] + indices[0:end_index]
for i in cyclic_indices:
node1 = parent2.get_node(i)
node2 = parent1.get_node(i)
# if child1.contains_node(node):
if not binary_search(node1.id, node_ids1):
child1.add_node(remaining_indices[offset1], node1)
offset1 += 1
if not binary_search(node2.id, node_ids2):
child2.add_node(remaining_indices[offset2], node2)
offset2 += 1
child1.update_distance()
child2.update_distance()
return child1, child2
def crossover_CX2(parent1: Tour, parent2: Tour) -> (Tour, Tour):
# TODO: Need Refactoring
child1 = Tour()
child2 = Tour()
visited_p1 = [False] * Graph.num_nodes
visited_p2 = [False] * Graph.num_nodes
child_index = 0
p1 = parent1
p2 = parent2
remaining_c1 = []
remaining_c2 = []
while True:
if len(visited_p2) == 0:
# Corner case: no cycle in a step
for i in range(len(remaining_c1)):
child1.add_node(-i-1, Graph.nodes_by_id[remaining_c1[i]])
for i in range(len(remaining_c2)):
child2.add_node(-i-1, Graph.nodes_by_id[remaining_c2[i]])
return child1, child2
# Step 2
node = p2.get_node(0)
visited_p2[0] = True
child1.add_node(0 + child_index, node)
# Step 3:
pos = p1.id_to_position[node.id]
visited_p1[pos] = True
pos2 = p1.id_to_position[p2.get_node(pos).id]
node2 = p2.get_node(pos2)
visited_p2[pos2] = True
child2.add_node(0 + child_index, node2)
i = 1
c1_nodes = [node.id]
c2_nodes = [node2.id]
while i + child_index < Graph.num_nodes:
if node2.id == p1.get_node(0).id:
visited_p1[0] = True
if len(set(c1_nodes) - set(c2_nodes)) != 0:
for id in c1_nodes:
if id in c2_nodes:
continue
remaining_c2.append(id)
for id in c2_nodes:
if id in c1_nodes:
continue
remaining_c1.append(id)
break
# Step 4:
pos = p1.id_to_position[node2.id]
visited_p1[pos] = True
node = p2.get_node(pos)
visited_p2[pos] = True
child1.add_node(i + child_index, node)
c1_nodes.append(node.id)
# Repeat Step 3:
pos = p1.id_to_position[node.id]
visited_p1[pos] = True
pos2 = p1.id_to_position[p2.get_node(pos).id]
node2 = p2.get_node(pos2)
visited_p2[pos2] = True
child2.add_node(i + child_index, node2)
c2_nodes.append(node2.id)
i += 1
if node2.id == p1.get_node(0).id:
visited_p1[0] = True
if len(set(c1_nodes) - set(c2_nodes)) != 0:
for id in c1_nodes:
if id in c2_nodes:
continue
remaining_c2.append(id)
for id in c2_nodes:
if id in c1_nodes:
continue
remaining_c1.append(id)
break
child_index += i
if child_index == Graph.num_nodes:
return child1, child2
new_p1 = Tour()
new_p2 = Tour()
i1 = 0
i2 = 0
for pos in range(len(visited_p1)):
if not visited_p1[pos]:
new_p1.add_node(i1, p1.get_node(pos))
i1 += 1
if not visited_p2[pos]:
new_p2.add_node(i2, p2.get_node(pos))
i2 += 1
assert i1 == i2
visited_p1 = [False] * i1
visited_p2 = [False] * i2
p1 = new_p1
p2 = new_p2
def crossover_edge_recombination(parent1: Tour, parent2: Tour) -> (Tour, Tour):
# Adjacency Information
# Node 1 -> (-9, 2, 4)
# Node 2 -> (1, -3, 5)
# (-) for both adjacent element
adjacency = {}
for i in range(Graph.num_nodes):
node = parent1.get_node(i)
adjacency[node.id] = [parent1.get_node(i-1).id,
parent1.get_node(i+1).id]
for i in range(Graph.num_nodes):
node = parent2.get_node(i)
ids = [parent2.get_node(i-1).id, parent2.get_node(i+1).id]
neighbors = adjacency[node.id]
for id in ids:
if id in neighbors:
i = neighbors.index(id)
adjacency[node.id][i] = -1 * neighbors[i]
else:
adjacency[node.id].append(id)
adjacencies = [adjacency, copy.deepcopy(adjacency)]
parents = [parent1, parent2]
children = [Tour(), Tour()]
def select_neighbor_id(prev_id, adjacency):
ids = adjacency[prev_id]
selected_id = []
for id in ids:
if id < 0:
selected_id = [-id]
break
if len(selected_id) == 0:
min_num_neighbors = 10**10
for id in ids:
if min_num_neighbors > len(adjacency[id]):
selected_id = [id]
min_num_neighbors = len(adjacency[id])
if min_num_neighbors == len(adjacency[id]):
selected_id.append(id)
if len(selected_id) == 0:
min_num_neighbors = 10**10
for id in adjacency.keys():
if id == prev_id:
continue
if min_num_neighbors > len(adjacency[id]):
selected_id = [id]
min_num_neighbors = len(adjacency[id])
if min_num_neighbors == len(adjacency[id]):
selected_id.append(id)
assert len(selected_id) != 0
if len(selected_id) > 1:
return selected_id[random.randint(0, len(selected_id)-1)]
return selected_id[0]
def delete_node_from_all_neighbors(prev_id, adjacency):
for id in adjacency.keys():
try:
adjacency[id].remove(prev_id)
except ValueError:
pass
try:
adjacency[id].remove(-1 * prev_id)
except ValueError:
pass
def delete_node_from_table(prev_id, adjacency):
del adjacency[prev_id]
for i in range(2):
child = children[i]
parent = parents[i]
adjacency = adjacencies[i]
child.add_node(0, parent.get_node(0))
prev_id = child.get_node(0).id
for i in range(1, Graph.num_nodes):
delete_node_from_all_neighbors(prev_id, adjacency)
selected_id = select_neighbor_id(prev_id, adjacency)
delete_node_from_table(prev_id, adjacency)
child.add_node(i, Graph.get_node(selected_id))
prev_id = selected_id
return children[0], children[1]
def crossover_inverse_sequence(cls, parent1: Tour, parent2: Tour) -> (Tour, Tour):
pass