forked from sinaghiassian/OffpolicyAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Learning.py
103 lines (89 loc) · 5.9 KB
/
Learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import numpy as np
import argparse
from data_presister import DataPersister, ParameterBuilder
from utils import save_result, Configuration, save_value_function, get_save_value_function_steps
from Registry.AlgRegistry import alg_dict
from Registry.EnvRegistry import environment_dict
from Registry.TaskRegistry import task_dict
from Job.JobBuilder import default_params
from Environments.rendering import ErrorRender
def learn(config: Configuration):
params = ParameterBuilder().add_algorithm_params(config).build()
if not os.path.exists(config.save_path):
os.makedirs(config.save_path, exist_ok=True)
env = environment_dict[config.environment]()
rmsve = np.zeros((task_dict[config.task].num_of_policies(), config.num_steps, config.num_of_runs))
for run in range(config.num_of_runs):
random_seed = (run + config.num_of_runs) if config.rerun else run
np.random.seed(random_seed)
task = task_dict[config.task](run_number=run, num_steps=config.num_steps)
agent = alg_dict[config.algorithm](task, **params)
rmsve_of_run = np.zeros((task.num_policies, task.num_steps))
agent.state = env.reset()
error_render = ErrorRender(task.num_policies, task.num_steps)
for step in range(task.num_steps):
rmsve_of_run[:, step], error = agent.compute_rmsve()
if config.render:
error_render.add_error(error)
agent.action = agent.choose_behavior_action()
agent.next_state, r, is_terminal, info = env.step(agent.action)
agent.learn(agent.state, agent.next_state, r, is_terminal)
if config.render:
env.render(mode='screen', render_cls=error_render)
if config.save_value_function and (step in get_save_value_function_steps(task.num_steps)):
save_value_function(agent.compute_value_function(), config.save_path, step, run)
if is_terminal:
agent.state = env.reset()
agent.reset()
continue
agent.state = agent.next_state
print(np.mean(rmsve_of_run, axis=0))
rmsve[:, :, run] = rmsve_of_run
rmsve_of_runs = np.transpose(np.mean(rmsve, axis=0)) # Average over all policies.
# _RMSVE_mean_over_runs
DataPersister.save_result(np.mean(rmsve_of_runs, axis=0), '_RMSVE_mean_over_runs', config)
DataPersister.save_result(np.std(rmsve_of_runs, axis=0, ddof=1) / np.sqrt(config.num_of_runs), '_RMSVE_stderr_over_runs', config)
# _RMSVE_stderr_over_runs
save_result(config.save_path, '_RMSVE_stderr_over_runs', np.mean(rmsve_of_runs, axis=0), params, config.rerun)
save_result(config.save_path, '_RMSVE_stderr_over_runs',
np.std(rmsve_of_runs, axis=0, ddof=1) / np.sqrt(config.num_of_runs), params, config.rerun)
# _mean_stderr_final
final_errors_mean_over_steps = np.mean(rmsve_of_runs[:, config.num_steps - int(0.01 * config.num_steps) - 1:],
axis=1)
DataPersister.save_result(np.array([np.mean(final_errors_mean_over_steps), np.std(final_errors_mean_over_steps, ddof=1) /
np.sqrt(config.num_of_runs)]), '_mean_stderr_final', config)
save_result(config.save_path, '_mean_stderr_final',
np.array([np.mean(final_errors_mean_over_steps), np.std(final_errors_mean_over_steps, ddof=1) /
np.sqrt(config.num_of_runs)]), params, config.rerun)
# _mean_stderr_auc
auc_mean_over_steps = np.mean(rmsve_of_runs, axis=1)
DataPersister.save_result(np.array([np.mean(auc_mean_over_steps),
np.std(auc_mean_over_steps, ddof=1) / np.sqrt(config.num_of_runs)]), '_mean_stderr_auc', config)
save_result(config.save_path, '_mean_stderr_auc',
np.array([np.mean(auc_mean_over_steps),
np.std(auc_mean_over_steps, ddof=1) / np.sqrt(config.num_of_runs)]), params, config.rerun)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--alpha', '-a', type=float, default=default_params['meta_parameters']['alpha'])
parser.add_argument('--lmbda', '-l', type=float, default=default_params['meta_parameters']['lmbda'])
parser.add_argument('--eta', '-et', type=float, default=default_params['meta_parameters']['eta'])
parser.add_argument('--beta', '-b', type=float, default=default_params['meta_parameters']['beta'])
parser.add_argument('--zeta', '-z', type=float, default=default_params['meta_parameters']['zeta'])
parser.add_argument('--tdrc_beta', '-tb', type=float, default=default_params['meta_parameters']['tdrc_beta'])
parser.add_argument('--gem_alpha', '-ga', type=float, default=default_params['meta_parameters']['gem_alpha'])
parser.add_argument('--gem_beta', '-gb', type=float, default=default_params['meta_parameters']['gem_beta'])
parser.add_argument('--algorithm', '-alg', type=str, default=default_params['agent'])
parser.add_argument('--task', '-t', type=str, default=default_params['task'])
parser.add_argument('--num_of_runs', '-nr', type=int, default=default_params['num_of_runs'])
parser.add_argument('--num_steps', '-ns', type=int, default=default_params['num_steps'])
parser.add_argument('--sub_sample', '-ss', type=int, default=default_params['sub_sample'])
parser.add_argument('--environment', '-e', type=str, default=default_params['environment'])
parser.add_argument('--save_path', '-sp', type=str, default='-')
parser.add_argument('--rerun', '-rrn', type=bool, default=False)
parser.add_argument('--render', '-rndr', type=bool, default=False)
parser.add_argument('--save_value_function', '-svf', type=bool, default=default_params['save_value_function'])
args = parser.parse_args()
if args.save_path == '-':
args.save_path = os.path.join(os.getcwd(), 'Results', default_params['exp'], args.algorithm)
learn(config=Configuration(vars(args)))