-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodelzoo.py
337 lines (276 loc) · 12 KB
/
modelzoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env python3
"""
Implementation of the Model Zoo for continual learning
"""
import argparse
import logging
import numpy as np
import torch
import torch.nn as nn
from copy import deepcopy
from datasets.build_dataset import fetch_dataclass
from utils.config import fetch_configs
from multihead import MultiHead
class ModelZoo():
def __init__(self, args, data_conf, hp_conf):
"""
Initialize model zoo hyper-parmeters and dataset
params:
- args: Argparse arguments
- data_conf: dict of data configuration
- hp_conf: dict of hyper-parameter configuration
"""
# Create log file
fname = args.data_config.split("/")[-2][:-5] + "_" + args.hp_config.split("/")[-1][:-5]
logging.basicConfig(filename=fname + ".log", level=logging.DEBUG)
logging.info(str(args))
# Store config variables
self.tasks_info = data_conf['tasks']
self.num_tasks = len(self.tasks_info)
self.args = args
self.data_conf = data_conf
self.hp_conf = hp_conf
self.dataclass = fetch_dataclass(data_conf['dataset'])
self.wts = np.array([1.0 for i in range(self.num_tasks)])
self.learner_task_idx = []
# Random generator for sampling tasks in every boosting iteration
self.rng = np.random.default_rng(seed=100)
# Store train and test predictions of individual models
self.tr_preds = {}
self.te_preds = {}
for t_id in range(self.num_tasks):
self.te_preds[t_id] = []
self.tr_preds[t_id] = []
def add_learner(self, learner_conf):
"""
Add a learner to the model-Zoo
params:
- learner_conf: dict describing Subset of tasks to train with
"""
# Train a single "multi-head" learner and add it to the Model Zoo
model = MultiHead(self.args, self.hp_conf, learner_conf)
net, trainmets = model.train(log_interval=200)
# Store all predictions of learner on train/test dataset
# This allows us to discard the learners weights
tr_ret = self.fetch_outputs(net, learner_conf['tasks'], True)
te_ret = self.fetch_outputs(net, learner_conf['tasks'], False)
for idx, t_id in enumerate(self.learner_task_idx):
self.tr_preds[t_id].append(tr_ret[idx])
self.te_preds[t_id].append(te_ret[idx])
def sample_tasks(self, rounds: int):
"""
Sample tasks to be used to train the next learner.
params:
- rounds: Number of learners added to Zoo
"""
# Sample tasks based on the training loss
numsubtasks = min(self.args.tasks_per_round, rounds + 0)
pr = self.wts[:rounds] / np.sum(self.wts[:rounds])
if rounds != 0:
learner_task_idx = self.rng.choice(rounds,
numsubtasks - 1,
replace=False, p=pr)
else:
learner_task_idx = np.array([])
# Manually add the newly seen task (boosting should
# automatically select this task due to the the very large loss)
learner_task_idx = np.append(learner_task_idx, int(rounds))
learner_task_idx = np.array(learner_task_idx, dtype=np.int32)
learner_task_info = []
for idx in learner_task_idx:
learner_task_info.append(self.tasks_info[idx])
self.learner_task_info = learner_task_info
self.learner_task_idx = learner_task_idx
learner_conf = deepcopy(self.data_conf)
learner_conf['tasks'] = deepcopy(learner_task_info)
print("\n====== Round %d ======" % (rounds + 1))
print("Sampled tasks: %s" % (str(learner_task_idx)))
return learner_conf
def update_task_wts(self, losses):
"""
Update the sampling weights based on the losses. self.wts should
ideally be based on the transfer exponent $\rho$. We however, use
the (noramlized) training loss like in boosting
params:
- losses: List of training losses on various tasks
"""
losses = (losses - np.mean(losses)) / np.mean(losses)
losses = np.exp(losses)
losses = np.clip(losses, 0.0001, 1000)
self.wts = losses
return losses
def evaluate(self, rounds: int):
"""
Evaluate the entire Model Zoo (combination of all learners)
on the train and test sets and log the results
params:
- rounds: Number of learners added to Zoo
"""
tr_ret = self.evaluate_preds(self.tr_preds, True)
te_ret = self.evaluate_preds(self.te_preds, False)
def rnd(x):
return list(np.round(x, 3))
info = {
'round': rounds,
'TrainLoss': rnd(tr_ret['Loss']),
'TrainAcc': rnd(tr_ret['Accuracy']),
'TestLoss': rnd(te_ret['Loss']),
'TestAcc': rnd(te_ret['Accuracy']),
'last_learner_tasks': list(self.learner_task_idx),
'last_learner_weights': rnd(self.wts)
}
logging.info(str((info)))
avg_acc = np.mean(info['TrainAcc'][:rounds]) if rounds > 0 else 0.0
allacc = str(list(np.round(info['TrainAcc'][:rounds], 2)))
print("Average accuracy of all seen tasks: %.2f" % (avg_acc))
print("Individual accuracies of all seen tasks:\n%s" % (allacc))
return tr_ret['Loss']
def fetch_outputs(self, net, l_task_info, tr_flag=False):
"""
Compute the outputs of newly trained learner on the tasks it
was trained on. The predictions of different learners are not
combined so that they can be used to compute the error of the
Model Zoo at any stage. This allows us to discard the weights
of the individual learner.
params:
- net: Neural net of newest learner
- l_task_info: Description of subset of tasks that neural net was
trained on
- tr_flag: Determines whether to use train/test set
"""
dataset = self.dataclass(args=self.args, tasks=l_task_info)
test_loaders = []
for t_id in range(len(l_task_info)):
test_loaders.append(
dataset.get_task_data_loader(t_id, 100, 6, train=tr_flag))
task_outputs = []
net.eval()
with torch.inference_mode():
for dataloader in test_loaders:
outputs = []
for dat, target in dataloader:
tasks, labels = target
tasks = tasks.long()
labels = labels.long()
if self.args.gpu:
dat = dat.cuda(non_blocking=True)
tasks = tasks.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
out = net(dat, tasks)
out = nn.functional.softmax(out, dim=1)
out = out.cpu().detach().numpy()
outputs.append(out)
outputs = np.concatenate(outputs)
task_outputs.append(outputs)
return task_outputs
def evaluate_preds(self, preds, tr_flag):
"""
Use the set of predictions from all learners to compute the error
and the loss of the entire Model Zoo
"""
dataset = self.dataclass(args=self.args, tasks=self.tasks_info)
criterion = nn.NLLLoss()
numcls = len(self.tasks_info[0])
test_loaders = []
for t_id in range(self.num_tasks):
test_loaders.append(
dataset.get_task_data_loader(t_id, 100, 6, train=tr_flag))
all_loss = []
all_acc = []
# Iterate over tasks and compute error/loss of Model Zoo on each task
for task_id, dataloader in enumerate(test_loaders):
count = 0
acc = 0
loss = 0
# Compute the outputs of the entire Model Zoo by ensemble
# averaging of the predictions of all learners
if len(preds[task_id]) == 0:
# If model has no prediction, output uniform probabilities
numpts = len(dataloader.dataset)
curpred = np.ones((numpts, numcls)) / numcls
else:
# If limited replay was, used apply a weighted ensemble. The
# rationale is that we increase the weight of a learner if it
# trained on more samples. This is true for the first learner
# trained on a task (wts[0] is hence has higher weight)
wts = np.ones(len(preds[task_id]))
wts[0] = 1 / self.args.replay_frac
curpred = np.average(preds[task_id], axis=0, weights=wts)
# Compute error/loss using outputs of Model Zoo (curpred)
for dat, target in dataloader:
tasks, labels = target
tasks, labels = tasks.long(), labels.long()
batch_size = int(labels.size()[0])
if self.args.gpu:
dat = dat.cuda(non_blocking=True)
tasks = tasks.cuda(non_blocking=True)
out = curpred[count:count + batch_size]
out = torch.log(torch.Tensor(out))
loss += (criterion(out, labels).item()) * batch_size
labels = labels.cpu().numpy()
out = out.cpu().detach().numpy()
acc += np.sum(labels == (np.argmax(out, axis=1)))
count += batch_size
all_loss.append(loss / count)
all_acc.append(acc / count)
info = {'Loss': all_loss,
'Accuracy': all_acc,
'train': tr_flag}
return info
def train(self):
"""
Train the Model Zoo
"""
self.evaluate(0)
for rounds in range(self.num_tasks):
learner_conf = self.sample_tasks(rounds)
self.add_learner(learner_conf)
losses = self.evaluate(rounds + 0)
self.update_task_wts(losses)
def download_dataset(args, data_conf):
"""
Download torchvision dataset. Mini-imagenet needs to be manually
downloaded from "https://www.kaggle.com/whitemoon/miniimagenet".
The 3 pickle files must be placed in the folder "./data/mini_imagenet"
"""
if args.dataset != "mini_imagenet":
tasks = data_conf['tasks']
dataclass = fetch_dataclass(data_conf['dataset'])
dataclass(args=args, tasks=tasks, download=True)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int,
default=100,
help="Random Seed")
parser.add_argument('--tasks_per_round', type=int,
default=5,
help="Number of sub-tasks (batch-size)")
parser.add_argument('--epochs', type=int,
default=100,
help="Number of Epochs")
parser.add_argument('--data_config', type=str,
default="./config/dataset/coarse_cifar100.yaml",
help="Multi-task config")
parser.add_argument('--replay_frac', type=float,
default=1.0,
help="Fraction of samples used for replay")
parser.add_argument('--hp_config', type=str,
default="./config/hyperparam/wrn.yaml",
help="Hyper parameter configuration")
args = parser.parse_args()
data_conf = fetch_configs(args.data_config)
hp_conf = fetch_configs(args.hp_config)
args.fp16 = args.gpu = torch.cuda.is_available()
args.model = hp_conf['model']
args.dataset = data_conf['dataset']
args.data = fetch_dataclass(data_conf['dataset'])
# Choose best implementation for functions
# Does sacrifice exact reproducability from random seed
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
download_dataset(args, data_conf)
# Train Model Zoo
zoo = ModelZoo(args, data_conf, hp_conf)
zoo.train()
if __name__ == '__main__':
main()