|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "a7c22dcf-5a2e-48e0-9c84-a11651e9b025", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import pandas as pd\n", |
| 11 | + "import numpy as np\n", |
| 12 | + "import os" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "id": "5cd30231-1d5b-4ca3-ae3d-728372852aef", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# Config for accessing the data on the s3 storage\n", |
| 23 | + "storage_options = {'anon':True, 'client_kwargs':{'endpoint_url':'https://os.unil.cloud.switch.ch'}}\n", |
| 24 | + "s3_path = 's3://lts2-graphnex/BXDmice/'" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "id": "2ab1e6b6-c958-4461-8dc1-f9e173e558e3", |
| 30 | + "metadata": { |
| 31 | + "tags": [] |
| 32 | + }, |
| 33 | + "source": [ |
| 34 | + "## Genotype\n", |
| 35 | + "The genotype file contains a list of differences in the genome of the different mice. These differences are at the scale of a nucleotide. In the data table, each row is an `SNP` [Single-nucleotide polymorphism](https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism). It can be inherited from one of the initial ancestors or the other. This is encoded as a binary value -1 or 1. The initial ancestors have a zero value." |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": null, |
| 41 | + "id": "589de0ca-5aae-4025-85d0-836d12de47fb", |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "# Load the data\n", |
| 46 | + "# Genotype\n", |
| 47 | + "genotype_path = os.path.join(s3_path, 'genotype_BXD.txt.gz')\n", |
| 48 | + "genotype = pd.read_csv(genotype_path, sep='\\t', storage_options=storage_options)\n", |
| 49 | + "print('File {} Opened.'.format(genotype_path))" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "id": "7ad624ce-63fe-452e-a612-cc3ea685a3dd", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "genotype.head()" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "code", |
| 64 | + "execution_count": null, |
| 65 | + "id": "f12c0d44-a09a-451a-a727-c8f7ba7f160d", |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "# Gene postion in the genome\n", |
| 70 | + "geno_map_path = os.path.join(s3_path, 'map_BXD.txt.gz')\n", |
| 71 | + "geno_map = pd.read_csv(geno_map_path, sep='\\t', storage_options=storage_options)\n", |
| 72 | + "print('File {} Opened.'.format(geno_map_path))" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": null, |
| 78 | + "id": "9655b2f5-6604-4e38-a15d-f17c79847b80", |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "geno_map.head()" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "id": "03dfacf9-da9a-4dbe-a320-58b766316c30", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "## Tissues\n", |
| 91 | + "During or after experiments, the expression of proteins in different tissues of the mice has been measured.\n", |
| 92 | + "The measurements have been recorded in a file per tissue. The data are in a large table with proteins as rows and mice as columns. The expression is a float number.\n", |
| 93 | + "\n", |
| 94 | + "For each mouse, only a subset of the tissues have been measured. Therefore, not all mice are present in each tissue data and different group of mice are found in the different tissue files." |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": null, |
| 100 | + "id": "724eca66-ded1-4cee-a872-db1692a4bdf5", |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "# Tissue\n", |
| 105 | + "tissue_name = 'Muscle_CD'\n", |
| 106 | + "#organ = 'Lung'\n", |
| 107 | + "#organ = 'Hippocampus'\n", |
| 108 | + "#organ = 'Gastrointestinal'\n", |
| 109 | + "tissue_path = os.path.join(s3_path, 'expression data', tissue_name + '.txt.gz')\n", |
| 110 | + "tissue = pd.read_csv(tissue_path, sep='\\t', storage_options=storage_options)\n", |
| 111 | + "print('File {} Opened.'.format(tissue_path))" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": null, |
| 117 | + "id": "c04eff0b-b998-4d0b-af7f-53b7ca3160f0", |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [], |
| 120 | + "source": [ |
| 121 | + "tissue.head()" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": null, |
| 127 | + "id": "70abc242-b56a-4c5f-b83a-f503ae156445", |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "df_genotype = pd.read_csv(path_bxd + file_genotype, sep='\\t')\n", |
| 132 | + "df_map = pd.read_csv(path_bxd + 'map_BXD.txt', sep='\\t')\n", |
| 133 | + "df_genotype.insert(0, 'Chr', df_map['Chr'].values)\n", |
| 134 | + "df_genotype.insert(2, 'Pos', df_map['Pos'].values)" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "markdown", |
| 139 | + "id": "a976b942-5433-4725-b9a3-b8593baca597", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "## Phenotype\n", |
| 143 | + "The phenotype data corresponds to the results of different experiments. It is made of 2 files, one file contains the results and the other contain the description of the experiment (experiment type, authors,...).\n", |
| 144 | + "In the result table, rows correspond to phenotypes and columns to mouse strains. The entries are float numbers. The table contains a large number of missing values as not all the mouse strains have been involved in all the experiments." |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "70697a87-b2bf-4107-a3bf-441ed7cf6cef", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "# Load the data\n", |
| 155 | + "# Phenotype\n", |
| 156 | + "phenotype_path = os.path.join(s3_path, 'Phenotype.txt.gz')\n", |
| 157 | + "phenotype = pd.read_csv(phenotype_path, sep='\\t', storage_options=storage_options)\n", |
| 158 | + "print('File {} Opened.'.format(phenotype_path))\n", |
| 159 | + "# Phenotype description\n", |
| 160 | + "phenotypeinfo_path = os.path.join(s3_path, 'phenotypes_id_aligner.txt.gz')\n", |
| 161 | + "phenotypeinfo = pd.read_csv(phenotypeinfo_path, sep='\\t', storage_options=storage_options)\n", |
| 162 | + "print('File {} Opened.'.format(phenotypeinfo_path))" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": null, |
| 168 | + "id": "0fcea224-df5e-4255-9850-766eaf7f6445", |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [], |
| 171 | + "source": [ |
| 172 | + "phenotype.head()" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": null, |
| 178 | + "id": "ae45cbb7-4cc2-4571-9db7-ec852d80444d", |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "phenotypeinfo.head()" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": null, |
| 188 | + "id": "411d02c2-fac9-4351-b321-0d6952946ea6", |
| 189 | + "metadata": {}, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "phenotypeinfo[phenotypeinfo['RecordID']==12894]" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "markdown", |
| 197 | + "id": "3eef0f3f-3550-4b39-91cc-7b0692a1f642", |
| 198 | + "metadata": {}, |
| 199 | + "source": [ |
| 200 | + "## Data cleaning" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "markdown", |
| 205 | + "id": "fb3c6e29-4ab2-4e9e-8b40-c41ce665c85c", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "### Drop duplicate genes in the dataset\n", |
| 209 | + "Some lines in the genotype DataFrame are identical and we will drop them to reduce the number of features and the computation." |
| 210 | + ] |
| 211 | + }, |
| 212 | + { |
| 213 | + "cell_type": "code", |
| 214 | + "execution_count": null, |
| 215 | + "id": "ce653493-b42d-4952-8256-d5dd91e77371", |
| 216 | + "metadata": {}, |
| 217 | + "outputs": [], |
| 218 | + "source": [ |
| 219 | + "# drop duplicate genes in the dataset\n", |
| 220 | + "geno_merge = pd.merge(geno_map, genotype, on='SNP')\n", |
| 221 | + "print('Size of the data before dropping duplicates',geno_merge.shape)\n", |
| 222 | + "# define a duplicate SNP as: \n", |
| 223 | + "# 1) an SNP where all the entries corresponding to BXD mice are identical to another SNP and\n", |
| 224 | + "# 2) both SNPs are on the same chromosome.\n", |
| 225 | + "col_to_search_duplicates = ['Chr'] + list(genotype.columns.values[5:])\n", |
| 226 | + "geno_reduced = geno_merge.drop_duplicates(subset=col_to_search_duplicates)\n", |
| 227 | + "print('Size of the data after dropping duplicates',geno_reduced.shape)" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": null, |
| 233 | + "id": "60080f9d-022f-4ae1-b330-97478efa39f5", |
| 234 | + "metadata": {}, |
| 235 | + "outputs": [], |
| 236 | + "source": [ |
| 237 | + "# Optionally, save the result as a compressed csv file, to be used by other notebooks\n", |
| 238 | + "geno_reduced.to_csv('geno_reduced.csv.gz')" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": null, |
| 244 | + "id": "3b25fbbe-55dc-48e5-a33d-bf613a342b9e", |
| 245 | + "metadata": {}, |
| 246 | + "outputs": [], |
| 247 | + "source": [] |
| 248 | + } |
| 249 | + ], |
| 250 | + "metadata": { |
| 251 | + "kernelspec": { |
| 252 | + "display_name": "venv", |
| 253 | + "language": "python", |
| 254 | + "name": "venv" |
| 255 | + }, |
| 256 | + "language_info": { |
| 257 | + "codemirror_mode": { |
| 258 | + "name": "ipython", |
| 259 | + "version": 3 |
| 260 | + }, |
| 261 | + "file_extension": ".py", |
| 262 | + "mimetype": "text/x-python", |
| 263 | + "name": "python", |
| 264 | + "nbconvert_exporter": "python", |
| 265 | + "pygments_lexer": "ipython3", |
| 266 | + "version": "3.8.0" |
| 267 | + } |
| 268 | + }, |
| 269 | + "nbformat": 4, |
| 270 | + "nbformat_minor": 5 |
| 271 | +} |
0 commit comments