|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# ANOVA test with genotype -> phenotype data" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": null, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import pandas as pd\n", |
| 17 | + "import numpy as np\n", |
| 18 | + "import os" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "import scipy.stats as stats\n", |
| 28 | + "import matplotlib.pyplot as plt\n", |
| 29 | + "import seaborn as sns" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "# Importing the data" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "# Config for accessing the data on the s3 storage\n", |
| 46 | + "storage_options = {'anon':True, 'client_kwargs':{'endpoint_url':'https://os.unil.cloud.switch.ch'}}\n", |
| 47 | + "s3_path = 's3://lts2-graphnex/BXDmice/'" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "# Load the data\n", |
| 57 | + "genotype_path = os.path.join(s3_path, 'geno_reduced.csv.gz')\n", |
| 58 | + "#genotype_path = os.path.join(s3_path, 'genotype_BXD.csv.gz')\n", |
| 59 | + "genotype = pd.read_csv(genotype_path, storage_options=storage_options)\n", |
| 60 | + "print('File {} Opened.'.format(genotype_path))\n", |
| 61 | + "phenotype_path = os.path.join(s3_path, 'Phenotype.txt.gz')\n", |
| 62 | + "phenotype = pd.read_csv(phenotype_path, sep='\\t', storage_options=storage_options)\n", |
| 63 | + "print('File {} Opened.'.format(phenotype_path))\n", |
| 64 | + "# Phenotype description\n", |
| 65 | + "phenotypeinfo_path = os.path.join(s3_path, 'phenotypes_id_aligner.txt.gz')\n", |
| 66 | + "phenotypeinfo = pd.read_csv(phenotypeinfo_path, sep='\\t', storage_options=storage_options)\n", |
| 67 | + "print('File {} Opened.'.format(phenotypeinfo_path))" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "markdown", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "## Example on one phenotype\n", |
| 75 | + "We choose the phenotype with id 'X122'. This phenotype is highly dependent on a small set of SNPs. This dependence is clearly visible with an ANOVA test." |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": null, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "pheno_id = 'X122'\n", |
| 85 | + "\n", |
| 86 | + "print('Phenotype description:')\n", |
| 87 | + "description = phenotypeinfo[phenotypeinfo['PhenoID']==pheno_id]['Phenotype'].values\n", |
| 88 | + "print(description)\n", |
| 89 | + "print('----------')\n", |
| 90 | + "pheno_BXD = phenotype[phenotype['PhenoID']==pheno_id].dropna(axis=1).drop('PhenoID', axis=1)\n", |
| 91 | + "mouse_list = list(pheno_BXD.columns)\n", |
| 92 | + "print('Phenotype values:')\n", |
| 93 | + "pheno_BXD" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": null, |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "# For each SNP, we separate the mice in two groups:\n", |
| 103 | + "# the one with -1 and the one with +1\n", |
| 104 | + "# and we compute the p-value\n", |
| 105 | + "geno_BXD = genotype[mouse_list]\n", |
| 106 | + "fvalues = []\n", |
| 107 | + "pvalues = []\n", |
| 108 | + "for SNP,row in geno_BXD.iterrows():\n", |
| 109 | + " population1 = row[row==-1]\n", |
| 110 | + " population2 = row[row==1]\n", |
| 111 | + " x = pheno_BXD[population1.keys()].values\n", |
| 112 | + " y = pheno_BXD[population2.keys()].values\n", |
| 113 | + " fvalue, pvalue = stats.f_oneway(x.T, y.T)\n", |
| 114 | + " fvalues += [fvalue[0]]\n", |
| 115 | + " pvalues += [pvalue[0]]" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "# We create a dataframe with the results\n", |
| 125 | + "df = pd.DataFrame()\n", |
| 126 | + "df['fvalues'] = fvalues\n", |
| 127 | + "df['pvalues'] = pvalues\n", |
| 128 | + "df['Chr'] = genotype['Chr'].values\n", |
| 129 | + "df['Pos'] = genotype['Pos'].values\n", |
| 130 | + "# Turn the index as a column with a name\n", |
| 131 | + "df.reset_index(inplace=True)\n", |
| 132 | + "df.rename(columns={'index' : 'SNP index'}, inplace=True)\n", |
| 133 | + "df.head()" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": null, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "# Plot the results of the ANOVA test\n", |
| 143 | + "f, ax = plt.subplots(figsize=(10, 10))\n", |
| 144 | + "ax.set(yscale=\"log\")\n", |
| 145 | + "sns.scatterplot(x=\"SNP index\", y=\"pvalues\", data=df.reset_index(), hue=\"Chr\").invert_yaxis()\n", |
| 146 | + "ax.axhline(0.05, ls='--', c='red')" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": null, |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [] |
| 155 | + } |
| 156 | + ], |
| 157 | + "metadata": { |
| 158 | + "kernelspec": { |
| 159 | + "display_name": "venv", |
| 160 | + "language": "python", |
| 161 | + "name": "venv" |
| 162 | + }, |
| 163 | + "language_info": { |
| 164 | + "codemirror_mode": { |
| 165 | + "name": "ipython", |
| 166 | + "version": 3 |
| 167 | + }, |
| 168 | + "file_extension": ".py", |
| 169 | + "mimetype": "text/x-python", |
| 170 | + "name": "python", |
| 171 | + "nbconvert_exporter": "python", |
| 172 | + "pygments_lexer": "ipython3", |
| 173 | + "version": "3.8.0" |
| 174 | + } |
| 175 | + }, |
| 176 | + "nbformat": 4, |
| 177 | + "nbformat_minor": 4 |
| 178 | +} |
0 commit comments