Skip to content

Commit 32e5313

Browse files
authored
docs: fix LogisticRegression docs rendering (#2295)
Thank you for opening a Pull Request! Before submitting your PR, there are a few things you can do to make sure it goes smoothly: - [ ] Make sure to open an issue as a [bug/issue](https://github.com/googleapis/python-bigquery-dataframes/issues/new/choose) before writing your code! That way we can discuss the change, evaluate designs, and agree on the general idea - [ ] Ensure the tests and linter pass - [ ] Code coverage does not decrease (if any source code was changed) - [ ] Appropriate docs were updated (if necessary) Fixes #<issue_number_goes_here> 🦕
1 parent da06439 commit 32e5313

File tree

1 file changed

+31
-29
lines changed
  • third_party/bigframes_vendored/sklearn/linear_model

1 file changed

+31
-29
lines changed

third_party/bigframes_vendored/sklearn/linear_model/_logistic.py

Lines changed: 31 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -23,35 +23,37 @@
2323
class LogisticRegression(LinearClassifierMixin, BaseEstimator):
2424
"""Logistic Regression (aka logit, MaxEnt) classifier.
2525
26-
>>> from bigframes.ml.linear_model import LogisticRegression
27-
>>> import bigframes.pandas as bpd
28-
>>> X = bpd.DataFrame({ \
29-
"feature0": [20, 21, 19, 18], \
30-
"feature1": [0, 1, 1, 0], \
31-
"feature2": [0.2, 0.3, 0.4, 0.5]})
32-
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
33-
>>> # Create the LogisticRegression
34-
>>> model = LogisticRegression()
35-
>>> model.fit(X, y)
36-
LogisticRegression()
37-
>>> model.predict(X) # doctest:+SKIP
38-
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
39-
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
40-
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
41-
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
42-
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
43-
4 rows × 5 columns
44-
45-
[4 rows x 5 columns in total]
46-
47-
>>> # Score the model
48-
>>> score = model.score(X, y)
49-
>>> score # doctest:+SKIP
50-
precision recall accuracy f1_score log_loss roc_auc
51-
0 1.0 1.0 1.0 1.0 0.000004 1.0
52-
1 rows × 6 columns
53-
54-
[1 rows x 6 columns in total]
26+
**Examples:**
27+
28+
>>> from bigframes.ml.linear_model import LogisticRegression
29+
>>> import bigframes.pandas as bpd
30+
>>> X = bpd.DataFrame({ \
31+
"feature0": [20, 21, 19, 18], \
32+
"feature1": [0, 1, 1, 0], \
33+
"feature2": [0.2, 0.3, 0.4, 0.5]})
34+
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
35+
>>> # Create the LogisticRegression
36+
>>> model = LogisticRegression()
37+
>>> model.fit(X, y)
38+
LogisticRegression()
39+
>>> model.predict(X) # doctest:+SKIP
40+
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
41+
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
42+
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
43+
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
44+
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
45+
4 rows × 5 columns
46+
47+
[4 rows x 5 columns in total]
48+
49+
>>> # Score the model
50+
>>> score = model.score(X, y)
51+
>>> score # doctest:+SKIP
52+
precision recall accuracy f1_score log_loss roc_auc
53+
0 1.0 1.0 1.0 1.0 0.000004 1.0
54+
1 rows × 6 columns
55+
56+
[1 rows x 6 columns in total]
5557
5658
Args:
5759
optimize_strategy (str, default "auto_strategy"):

0 commit comments

Comments
 (0)