diff --git a/google/cloud/aiplatform/explain/lit.py b/google/cloud/aiplatform/explain/lit.py index c76840502d..a34578abad 100644 --- a/google/cloud/aiplatform/explain/lit.py +++ b/google/cloud/aiplatform/explain/lit.py @@ -14,10 +14,14 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Dict, List, Tuple, Union +import logging +import os + +from typing import Dict, List, Optional, Tuple, Union try: from lit_nlp.api import dataset as lit_dataset + from lit_nlp.api import dtypes as lit_dtypes from lit_nlp.api import model as lit_model from lit_nlp.api import types as lit_types from lit_nlp import notebook @@ -82,6 +86,7 @@ def __init__( model: str, input_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821 output_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821 + attribution_method: str = "sampled_shapley", ): """Construct a VertexLitModel. Args: @@ -94,39 +99,33 @@ def __init__( output_types: Required. An OrderedDict of string names matching the labels of the model as the key, and the associated LitType of the label. + attribution_method: + Optional. A string to choose what attribution configuration to + set up the explainer with. Valid options are 'sampled_shapley' + or 'integrated_gradients'. """ - self._loaded_model = tf.saved_model.load(model) - serving_default = self._loaded_model.signatures[ - tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY - ] - _, self._kwargs_signature = serving_default.structured_input_signature - self._output_signature = serving_default.structured_outputs - - if len(self._kwargs_signature) != 1: - raise ValueError("Please use a model with only one input tensor.") - - if len(self._output_signature) != 1: - raise ValueError("Please use a model with only one output tensor.") - + self._load_model(model) self._input_types = input_types self._output_types = output_types + self._input_tensor_name = next(iter(self._kwargs_signature)) + self._attribution_explainer = None + if os.environ.get("LIT_PROXY_URL"): + self._set_up_attribution_explainer(model, attribution_method) + + @property + def attribution_explainer(self,) -> Optional["AttributionExplainer"]: # noqa: F821 + """Gets the attribution explainer property if set.""" + return self._attribution_explainer def predict_minibatch( self, inputs: List[lit_types.JsonDict] ) -> List[lit_types.JsonDict]: - """Returns predictions for a single batch of examples. - Args: - inputs: - sequence of inputs, following model.input_spec() - Returns: - list of outputs, following model.output_spec() - """ instances = [] for input in inputs: instance = [input[feature] for feature in self._input_types] instances.append(instance) prediction_input_dict = { - next(iter(self._kwargs_signature)): tf.convert_to_tensor(instances) + self._input_tensor_name: tf.convert_to_tensor(instances) } prediction_dict = self._loaded_model.signatures[ tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY @@ -140,6 +139,15 @@ def predict_minibatch( for label, value in zip(self._output_types.keys(), prediction) } ) + # Get feature attributions + if self.attribution_explainer: + attributions = self.attribution_explainer.explain( + [{self._input_tensor_name: i} for i in instances] + ) + for i, attribution in enumerate(attributions): + outputs[i]["feature_attribution"] = lit_dtypes.FeatureSalience( + attribution.feature_importance() + ) return outputs def input_spec(self) -> lit_types.Spec: @@ -148,7 +156,70 @@ def input_spec(self) -> lit_types.Spec: def output_spec(self) -> lit_types.Spec: """Return a spec describing model outputs.""" - return self._output_types + output_spec_dict = dict(self._output_types) + if self.attribution_explainer: + output_spec_dict["feature_attribution"] = lit_types.FeatureSalience( + signed=True + ) + return output_spec_dict + + def _load_model(self, model: str): + """Loads a TensorFlow saved model and populates the input and output signature attributes of the class. + Args: + model: Required. A string reference to a TensorFlow saved model directory. + Raises: + ValueError if the model has more than one input tensor or more than one output tensor. + """ + self._loaded_model = tf.saved_model.load(model) + serving_default = self._loaded_model.signatures[ + tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY + ] + _, self._kwargs_signature = serving_default.structured_input_signature + self._output_signature = serving_default.structured_outputs + + if len(self._kwargs_signature) != 1: + raise ValueError("Please use a model with only one input tensor.") + + if len(self._output_signature) != 1: + raise ValueError("Please use a model with only one output tensor.") + + def _set_up_attribution_explainer( + self, model: str, attribution_method: str = "integrated_gradients" + ): + """Populates the attribution explainer attribute of the class. + Args: + model: Required. A string reference to a TensorFlow saved model directory. + attribution_method: + Optional. A string to choose what attribution configuration to + set up the explainer with. Valid options are 'sampled_shapley' + or 'integrated_gradients'. + """ + try: + import explainable_ai_sdk + from explainable_ai_sdk.metadata.tf.v2 import SavedModelMetadataBuilder + except ImportError: + logging.info( + "Skipping explanations because the Explainable AI SDK is not installed." + 'Please install the SDK using "pip install explainable-ai-sdk"' + ) + return + + builder = SavedModelMetadataBuilder(model) + builder.get_metadata() + builder.set_numeric_metadata( + self._input_tensor_name, + index_feature_mapping=list(self._input_types.keys()), + ) + builder.save_metadata(model) + if attribution_method == "integrated_gradients": + explainer_config = explainable_ai_sdk.IntegratedGradientsConfig() + else: + explainer_config = explainable_ai_sdk.SampledShapleyConfig() + + self._attribution_explainer = explainable_ai_sdk.load_model_from_local_path( + model, explainer_config + ) + self._load_model(model) def create_lit_dataset( @@ -172,22 +243,27 @@ def create_lit_model( model: str, input_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821 output_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821 + attribution_method: str = "sampled_shapley", ) -> lit_model.Model: """Creates a LIT Model object. Args: model: - Required. A string reference to a local TensorFlow saved model directory. - The model must have at most one input and one output tensor. + Required. A string reference to a local TensorFlow saved model directory. + The model must have at most one input and one output tensor. input_types: - Required. An OrderedDict of string names matching the features of the model - as the key, and the associated LitType of the feature. + Required. An OrderedDict of string names matching the features of the model + as the key, and the associated LitType of the feature. output_types: - Required. An OrderedDict of string names matching the labels of the model - as the key, and the associated LitType of the label. + Required. An OrderedDict of string names matching the labels of the model + as the key, and the associated LitType of the label. + attribution_method: + Optional. A string to choose what attribution configuration to + set up the explainer with. Valid options are 'sampled_shapley' + or 'integrated_gradients'. Returns: A LIT Model object that has the same functionality as the model provided. """ - return _VertexLitModel(model, input_types, output_types) + return _VertexLitModel(model, input_types, output_types, attribution_method) def open_lit( @@ -198,11 +274,11 @@ def open_lit( """Open LIT from the provided models and datasets. Args: models: - Required. A list of LIT models to open LIT with. + Required. A list of LIT models to open LIT with. input_types: - Required. A lit of LIT datasets to open LIT with. + Required. A lit of LIT datasets to open LIT with. open_in_new_tab: - Optional. A boolean to choose if LIT open in a new tab or not. + Optional. A boolean to choose if LIT open in a new tab or not. Raises: ImportError if LIT is not installed. """ @@ -216,24 +292,31 @@ def set_up_and_open_lit( model: Union[str, lit_model.Model], input_types: Union[List[str], Dict[str, lit_types.LitType]], output_types: Union[str, List[str], Dict[str, lit_types.LitType]], + attribution_method: str = "sampled_shapley", open_in_new_tab: bool = True, ) -> Tuple[lit_dataset.Dataset, lit_model.Model]: """Creates a LIT dataset and model and opens LIT. Args: - dataset: + dataset: Required. A Pandas DataFrame that includes feature column names and data. - column_types: + column_types: Required. An OrderedDict of string names matching the columns of the dataset as the key, and the associated LitType of the column. - model: + model: Required. A string reference to a TensorFlow saved model directory. The model must have at most one input and one output tensor. - input_types: + input_types: Required. An OrderedDict of string names matching the features of the model as the key, and the associated LitType of the feature. - output_types: + output_types: Required. An OrderedDict of string names matching the labels of the model as the key, and the associated LitType of the label. + attribution_method: + Optional. A string to choose what attribution configuration to + set up the explainer with. Valid options are 'sampled_shapley' + or 'integrated_gradients'. + open_in_new_tab: + Optional. A boolean to choose if LIT open in a new tab or not. Returns: A Tuple of the LIT dataset and model created. Raises: @@ -244,8 +327,12 @@ def set_up_and_open_lit( dataset = create_lit_dataset(dataset, column_types) if not isinstance(model, lit_model.Model): - model = create_lit_model(model, input_types, output_types) + model = create_lit_model( + model, input_types, output_types, attribution_method=attribution_method + ) - open_lit({"model": model}, {"dataset": dataset}, open_in_new_tab=open_in_new_tab) + open_lit( + {"model": model}, {"dataset": dataset}, open_in_new_tab=open_in_new_tab, + ) return dataset, model diff --git a/setup.py b/setup.py index 5ceb81b60e..2b8c58f033 100644 --- a/setup.py +++ b/setup.py @@ -36,7 +36,12 @@ tensorboard_extra_require = ["tensorflow >=2.3.0, <=2.7.0"] metadata_extra_require = ["pandas >= 1.0.0"] xai_extra_require = ["tensorflow >=2.3.0, <=2.5.0"] -lit_extra_require = ["tensorflow >= 2.3.0", "pandas >= 1.0.0", "lit-nlp >= 0.4.0"] +lit_extra_require = [ + "tensorflow >= 2.3.0", + "pandas >= 1.0.0", + "lit-nlp >= 0.4.0", + "explainable-ai-sdk >= 1.0.0", +] profiler_extra_require = [ "tensorboard-plugin-profile >= 2.4.0", "werkzeug >= 2.0.0", diff --git a/tests/unit/aiplatform/test_explain_lit.py b/tests/unit/aiplatform/test_explain_lit.py index 718f62b022..8f10193c7b 100644 --- a/tests/unit/aiplatform/test_explain_lit.py +++ b/tests/unit/aiplatform/test_explain_lit.py @@ -15,19 +15,21 @@ # limitations under the License. import collections +import explainable_ai_sdk +import os +import pandas as pd import pytest import tensorflow as tf -import pandas as pd -from lit_nlp.api import types as lit_types -from lit_nlp import notebook -from unittest import mock from google.cloud.aiplatform.explain.lit import ( create_lit_dataset, create_lit_model, open_lit, set_up_and_open_lit, ) +from lit_nlp.api import types as lit_types +from lit_nlp import notebook +from unittest import mock @pytest.fixture @@ -36,6 +38,33 @@ def widget_render_mock(): yield render_mock +@pytest.fixture +def sampled_shapley_explainer_mock(): + with mock.patch.object( + explainable_ai_sdk, "SampledShapleyConfig", create=True + ) as config_mock: + yield config_mock + + +@pytest.fixture +def load_model_from_local_path_mock(): + with mock.patch.object( + explainable_ai_sdk, "load_model_from_local_path", autospec=True + ) as explainer_mock: + model_mock = mock.Mock() + explanation_mock = mock.Mock() + explanation_mock.feature_importance.return_value = { + "feature_1": 0.01, + "feature_2": 0.1, + } + model_mock.explain.return_value = [ + explanation_mock + # , explanation_mock + ] + explainer_mock.return_value = model_mock + yield explainer_mock + + @pytest.fixture def set_up_sequential(tmpdir): # Set up a sequential model @@ -55,7 +84,7 @@ def set_up_sequential(tmpdir): @pytest.fixture def set_up_pandas_dataframe_and_columns(): dataframe = pd.DataFrame.from_dict( - {"feature_1": [1.0, 2.0], "feature_2": [3.0, 4.0], "label": [1.0, 0.0]} + {"feature_1": [1.0], "feature_2": [3.0], "label": [1.0]} ) columns = collections.OrderedDict( [ @@ -74,7 +103,6 @@ def test_create_lit_dataset_from_pandas_returns_dataset( lit_dataset = create_lit_dataset(pd_dataset, lit_columns) expected_examples = [ {"feature_1": 1.0, "feature_2": 3.0, "label": 1.0}, - {"feature_1": 2.0, "feature_2": 4.0, "label": 0.0}, ] assert lit_dataset.spec() == dict(lit_columns) @@ -86,18 +114,39 @@ def test_create_lit_model_from_tensorflow_returns_model(set_up_sequential): lit_model = create_lit_model(saved_model_path, feature_types, label_types) test_inputs = [ {"feature_1": 1.0, "feature_2": 2.0}, - {"feature_1": 3.0, "feature_2": 4.0}, ] outputs = lit_model.predict_minibatch(test_inputs) assert lit_model.input_spec() == dict(feature_types) assert lit_model.output_spec() == dict(label_types) - assert len(outputs) == 2 + assert len(outputs) == 1 for item in outputs: assert item.keys() == {"label"} assert len(item.values()) == 1 +@mock.patch.dict(os.environ, {"LIT_PROXY_URL": "auto"}) +@pytest.mark.usefixtures( + "sampled_shapley_explainer_mock", "load_model_from_local_path_mock" +) +def test_create_lit_model_from_tensorflow_with_xai_returns_model(set_up_sequential): + feature_types, label_types, saved_model_path = set_up_sequential + lit_model = create_lit_model(saved_model_path, feature_types, label_types) + test_inputs = [ + {"feature_1": 1.0, "feature_2": 2.0}, + ] + outputs = lit_model.predict_minibatch(test_inputs) + + assert lit_model.input_spec() == dict(feature_types) + assert lit_model.output_spec() == dict( + {**label_types, "feature_attribution": lit_types.FeatureSalience(signed=True)} + ) + assert len(outputs) == 1 + for item in outputs: + assert item.keys() == {"label", "feature_attribution"} + assert len(item.values()) == 2 + + def test_open_lit( set_up_sequential, set_up_pandas_dataframe_and_columns, widget_render_mock ): @@ -121,11 +170,9 @@ def test_set_up_and_open_lit( expected_examples = [ {"feature_1": 1.0, "feature_2": 3.0, "label": 1.0}, - {"feature_1": 2.0, "feature_2": 4.0, "label": 0.0}, ] test_inputs = [ {"feature_1": 1.0, "feature_2": 2.0}, - {"feature_1": 3.0, "feature_2": 4.0}, ] outputs = lit_model.predict_minibatch(test_inputs) @@ -134,9 +181,45 @@ def test_set_up_and_open_lit( assert lit_model.input_spec() == dict(feature_types) assert lit_model.output_spec() == dict(label_types) - assert len(outputs) == 2 + assert len(outputs) == 1 for item in outputs: assert item.keys() == {"label"} assert len(item.values()) == 1 widget_render_mock.assert_called_once() + + +@mock.patch.dict(os.environ, {"LIT_PROXY_URL": "auto"}) +@pytest.mark.usefixtures( + "sampled_shapley_explainer_mock", "load_model_from_local_path_mock" +) +def test_set_up_and_open_lit_with_xai( + set_up_sequential, set_up_pandas_dataframe_and_columns, widget_render_mock +): + pd_dataset, lit_columns = set_up_pandas_dataframe_and_columns + feature_types, label_types, saved_model_path = set_up_sequential + lit_dataset, lit_model = set_up_and_open_lit( + pd_dataset, lit_columns, saved_model_path, feature_types, label_types + ) + + expected_examples = [ + {"feature_1": 1.0, "feature_2": 3.0, "label": 1.0}, + ] + test_inputs = [ + {"feature_1": 1.0, "feature_2": 2.0}, + ] + outputs = lit_model.predict_minibatch(test_inputs) + + assert lit_dataset.spec() == dict(lit_columns) + assert expected_examples == lit_dataset._examples + + assert lit_model.input_spec() == dict(feature_types) + assert lit_model.output_spec() == dict( + {**label_types, "feature_attribution": lit_types.FeatureSalience(signed=True)} + ) + assert len(outputs) == 1 + for item in outputs: + assert item.keys() == {"label", "feature_attribution"} + assert len(item.values()) == 2 + + widget_render_mock.assert_called_once()