From efb6d18f868086bc53aceab60942eb837ced65b7 Mon Sep 17 00:00:00 2001 From: Yaqi Ji Date: Wed, 8 Sep 2021 13:03:11 -0700 Subject: [PATCH] feat: add explanation metadata `get_metadata_protobuf` for reuse (#672) * feat: add explanation metadata object for reuse * Fix test * address comments for renaming method name --- README.rst | 20 +++++++++++-- .../explain/metadata/metadata_builder.py | 4 +++ .../tf/v1/saved_model_metadata_builder.py | 11 ++++++-- .../tf/v2/saved_model_metadata_builder.py | 11 ++++++-- ...n_saved_model_metadata_builder_tf1_test.py | 28 +++++++++++++++++++ ...n_saved_model_metadata_builder_tf2_test.py | 21 +++++++++++++- 6 files changed, 87 insertions(+), 8 deletions(-) diff --git a/README.rst b/README.rst index 6fae8e84ee..bc53652ec7 100644 --- a/README.rst +++ b/README.rst @@ -304,7 +304,7 @@ You can also create a batch prediction job asynchronously by including the `sync batch_prediction_job.state # block until job is complete - batch_prediction_job.wait() + batch_prediction_job.wait() Endpoints @@ -393,7 +393,7 @@ To create a Vertex Pipeline run: Explainable AI: Get Metadata ---------------------------- -To get metadata from TensorFlow 1 models: +To get metadata in dictionary format from TensorFlow 1 models: .. code-block:: Python @@ -404,7 +404,7 @@ To get metadata from TensorFlow 1 models: ) generated_md = builder.get_metadata() -To get metadata from TensorFlow 2 models: +To get metadata in dictionary format from TensorFlow 2 models: .. code-block:: Python @@ -413,6 +413,20 @@ To get metadata from TensorFlow 2 models: builder = saved_model_metadata_builder.SavedModelMetadataBuilder('gs://python/to/my/model/dir') generated_md = builder.get_metadata() +To use Explanation Metadata in endpoint deployment and model upload: + +.. code-block:: Python + + explanation_metadata = builder.get_metadata_protobuf() + + # To deploy a model to an endpoint with explanation + model.deploy(..., explanation_metadata=explanation_metadata) + + # To deploy a model to a created endpoint with explanation + endpoint.deploy(..., explanation_metadata=explanation_metadata) + + # To upload a model with explanation + aiplatform.Model.upload(..., explanation_metadata=explanation_metadata) Next Steps diff --git a/google/cloud/aiplatform/explain/metadata/metadata_builder.py b/google/cloud/aiplatform/explain/metadata/metadata_builder.py index 98e768ea24..002317d508 100644 --- a/google/cloud/aiplatform/explain/metadata/metadata_builder.py +++ b/google/cloud/aiplatform/explain/metadata/metadata_builder.py @@ -28,3 +28,7 @@ class MetadataBuilder(_ABC): @abc.abstractmethod def get_metadata(self): """Returns the current metadata as a dictionary.""" + + @abc.abstractmethod + def get_metadata_protobuf(self): + """Returns the current metadata as ExplanationMetadata protobuf""" diff --git a/google/cloud/aiplatform/explain/metadata/tf/v1/saved_model_metadata_builder.py b/google/cloud/aiplatform/explain/metadata/tf/v1/saved_model_metadata_builder.py index 29f5b5b900..89261f8c1f 100644 --- a/google/cloud/aiplatform/explain/metadata/tf/v1/saved_model_metadata_builder.py +++ b/google/cloud/aiplatform/explain/metadata/tf/v1/saved_model_metadata_builder.py @@ -113,10 +113,17 @@ def get_metadata(self) -> Dict[str, Any]: Returns: Json format of the explanation metadata. """ - current_md = explanation_metadata.ExplanationMetadata( + return json_format.MessageToDict(self.get_metadata_protobuf()._pb) + + def get_metadata_protobuf(self) -> explanation_metadata.ExplanationMetadata: + """Returns the current metadata as a Protobuf object. + + Returns: + ExplanationMetadata object format of the explanation metadata. + """ + return explanation_metadata.ExplanationMetadata( inputs=self._inputs, outputs=self._outputs, ) - return json_format.MessageToDict(current_md._pb) def _create_input_metadata_from_signature( diff --git a/google/cloud/aiplatform/explain/metadata/tf/v2/saved_model_metadata_builder.py b/google/cloud/aiplatform/explain/metadata/tf/v2/saved_model_metadata_builder.py index abff1a2e12..36f520d7b0 100644 --- a/google/cloud/aiplatform/explain/metadata/tf/v2/saved_model_metadata_builder.py +++ b/google/cloud/aiplatform/explain/metadata/tf/v2/saved_model_metadata_builder.py @@ -127,7 +127,14 @@ def get_metadata(self) -> Dict[str, Any]: Returns: Json format of the explanation metadata. """ - current_md = explanation_metadata.ExplanationMetadata( + return json_format.MessageToDict(self.get_metadata_protobuf()._pb) + + def get_metadata_protobuf(self) -> explanation_metadata.ExplanationMetadata: + """Returns the current metadata as a Protobuf object. + + Returns: + ExplanationMetadata object format of the explanation metadata. + """ + return explanation_metadata.ExplanationMetadata( inputs=self._inputs, outputs=self._outputs, ) - return json_format.MessageToDict(current_md._pb) diff --git a/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf1_test.py b/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf1_test.py index c24553751f..41ff8bb68e 100644 --- a/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf1_test.py +++ b/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf1_test.py @@ -18,6 +18,9 @@ import tensorflow.compat.v1 as tf from google.cloud.aiplatform.explain.metadata.tf.v1 import saved_model_metadata_builder +from google.cloud.aiplatform.compat.types import ( + explanation_metadata_v1beta1 as explanation_metadata, +) class SavedModelMetadataBuilderTF1Test(tf.test.TestCase): @@ -68,6 +71,18 @@ def test_get_metadata_correct_inputs(self): assert md_builder.get_metadata() == expected_md + def test_get_metadata_protobuf_correct_inputs(self): + self._set_up() + md_builder = saved_model_metadata_builder.SavedModelMetadataBuilder( + self.model_path, tags=[tf.saved_model.tag_constants.SERVING] + ) + expected_object = explanation_metadata.ExplanationMetadata( + inputs={"x": {"input_tensor_name": "inp:0"}}, + outputs={"y": {"output_tensor_name": "Relu:0"}}, + ) + + assert md_builder.get_metadata_protobuf() == expected_object + def test_get_metadata_double_output(self): self._set_up() md_builder = saved_model_metadata_builder.SavedModelMetadataBuilder( @@ -80,3 +95,16 @@ def test_get_metadata_double_output(self): } assert md_builder.get_metadata() == expected_md + + def test_get_metadata_protobuf_double_output(self): + self._set_up() + md_builder = saved_model_metadata_builder.SavedModelMetadataBuilder( + self.model_path, signature_name="double", outputs_to_explain=["lin"] + ) + + expected_object = explanation_metadata.ExplanationMetadata( + inputs={"x": {"input_tensor_name": "inp:0"}}, + outputs={"lin": {"output_tensor_name": "Add:0"}}, + ) + + assert md_builder.get_metadata_protobuf() == expected_object diff --git a/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf2_test.py b/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf2_test.py index 6e297f6949..5ebc0a9af7 100644 --- a/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf2_test.py +++ b/tests/unit/aiplatform/test_explain_saved_model_metadata_builder_tf2_test.py @@ -20,10 +20,13 @@ import numpy as np from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder +from google.cloud.aiplatform.compat.types import ( + explanation_metadata_v1beta1 as explanation_metadata, +) class SavedModelMetadataBuilderTF2Test(tf.test.TestCase): - def test_get_metadata_sequential(self): + def _set_up_sequential(self): # Set up for the sequential. self.seq_model = tf.keras.models.Sequential() self.seq_model.add(tf.keras.layers.Dense(32, activation="relu", input_dim=10)) @@ -32,6 +35,9 @@ def test_get_metadata_sequential(self): self.saved_model_path = self.get_temp_dir() tf.saved_model.save(self.seq_model, self.saved_model_path) + def test_get_metadata_sequential(self): + self._set_up_sequential() + builder = saved_model_metadata_builder.SavedModelMetadataBuilder( self.saved_model_path ) @@ -42,6 +48,19 @@ def test_get_metadata_sequential(self): } assert expected_md == generated_md + def test_get_metadata_protobuf_sequential(self): + self._set_up_sequential() + + builder = saved_model_metadata_builder.SavedModelMetadataBuilder( + self.saved_model_path + ) + generated_object = builder.get_metadata_protobuf() + expected_object = explanation_metadata.ExplanationMetadata( + inputs={"dense_input": {"input_tensor_name": "dense_input"}}, + outputs={"dense_2": {"output_tensor_name": "dense_2"}}, + ) + assert expected_object == generated_object + def test_get_metadata_functional(self): inputs1 = tf.keras.Input(shape=(10,), name="model_input1") inputs2 = tf.keras.Input(shape=(10,), name="model_input2")