This repository has been archived by the owner on Dec 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 17
/
data.h
473 lines (411 loc) · 16.9 KB
/
data.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: data.h
// -----------------------------------------------------------------------------
#ifndef CUCKOO_INDEX_DATA_H_
#define CUCKOO_INDEX_DATA_H_
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "absl/memory/memory.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "boost/math/tools/univariate_statistics.hpp"
#include "common/byte_coding.h"
#include "evaluation_utils.h"
#include "single_include/csv.hpp"
namespace ci {
enum class DataType { STRING, INT };
inline std::string DataTypeName(DataType data_type) {
switch (data_type) {
case DataType::STRING:
return "STRING";
case DataType::INT:
return "INT";
}
return "UNKNOWN";
}
class Column;
using ColumnPtr = std::unique_ptr<Column>;
// Holds data and provides stats.
class Column {
public:
// Note that we dict-encode NULL strings as int 0. Thus, the sentinel value
// should not be changed without changing the dict encoding in the `Column`
// constructor below.
static constexpr int kIntNullSentinel = 0;
static constexpr const char* kStringNullSentinel = "NULL";
static ColumnPtr IntColumn(const std::string& name, std::vector<int> data) {
return ColumnPtr(new Column(name, DataType::INT, std::move(data)));
}
Column(const std::string& name, const DataType type,
const std::vector<std::string>& str_data)
: name_(name), type_(type), str_data_(str_data) {
if (type == DataType::INT) {
// Convert string to int.
data_.reserve(str_data.size());
for (const std::string& str : str_data) data_.push_back(std::stoi(str));
} else if (type == DataType::STRING) {
// Dict-encode strings. Essentially, encode strings as dense integers in
// an order-preserving way. Also called order-preserving minimal perfect
// hashing: https://en.wikipedia.org/wiki/Perfect_hash_function.
// Such a mapping is possible since we know all indexed strings at build
// time. The advantage over regular, non-order preserving hash functions
// is that we can use ZoneMaps (min/max checks) for data pruning.
// Note: Due to the dense mapping, we cannot have negative lookup keys
// (strings that do not exist in the indexed data) that fall within the
// range of dense integers. Thus, ZoneMaps will be 100% effective in such
// cases. That is, because we need to choose an integer outside of the
// range for negative lookups keys (e.g., int::max).
//
// We make sure that NULL values get an ID of 0 – that way we can detect
// and ignore them when building some data structures, e.g. ZoneMaps.
data_.reserve(str_data.size());
absl::flat_hash_set<std::string> distinct_strings(str_data.begin(),
str_data.end());
distinct_strings.erase(kStringNullSentinel);
std::vector<std::string> distinct_strings_v(distinct_strings.begin(),
distinct_strings.end());
std::sort(distinct_strings_v.begin(), distinct_strings_v.end());
distinct_strings_v.insert(distinct_strings_v.begin(),
kStringNullSentinel);
int i = 0;
for (const std::string& str : distinct_strings_v) {
string_dict_[str] = i++;
}
// Convert strings to ints using the mapping.
for (const std::string& str : str_data) {
auto it = string_dict_.find(str);
if (it == string_dict_.end()) {
std::cerr << "Error during dict encoding." << std::endl;
exit(EXIT_FAILURE);
}
data_.push_back(it->second);
}
} else {
std::cerr << "Unsupported data type." << std::endl;
exit(EXIT_FAILURE);
}
// Initialize `distinct_values_`.
distinct_values_ = std::unordered_set<int>(data_.begin(), data_.end());
// Set `min_` and `max_`.
const auto min_max = std::minmax_element(begin(data_), end(data_));
min_ = *min_max.first;
max_ = *min_max.second;
// Compute standard moments.
mean_ = boost::math::tools::mean(data_);
variance_ = boost::math::tools::variance(data_);
skewness_ = boost::math::tools::skewness(data_);
kurtosis_ = boost::math::tools::kurtosis(data_);
PrintStats();
}
void PrintStats() const {
std::cout << "column: " << name_ << " (" << DataTypeName(type_)
<< "), min: " << min_ << ", max: " << max_
<< ", #rows: " << num_rows()
<< ", cardinality: " << num_distinct_values()
<< ", mean: " << mean_ << ", variance: " << variance_
<< ", skewness: " << skewness_ << ", kurtosis: " << kurtosis_
<< std::endl;
}
bool Contains(int value) const {
return distinct_values_.find(value) != distinct_values_.end();
}
bool StripeContains(std::size_t num_rows_per_stripe, std::size_t stripe_id,
int value) const {
const std::size_t num_stripes = data_.size() / num_rows_per_stripe;
if (stripe_id >= num_stripes) {
std::cerr << "`stripe_id` is out of bounds." << std::endl;
exit(EXIT_FAILURE);
}
const std::size_t stripe_begin = num_rows_per_stripe * stripe_id;
const std::size_t stripe_end = stripe_begin + num_rows_per_stripe;
for (size_t i = stripe_begin; i < stripe_end; ++i) {
if (data_[i] == value) return true;
}
return false;
}
// Reorders the rows in the column according to the given list of indexes.
//
// At position i the list should specify the row that should be moved to that
// position.
void Reorder(absl::Span<const size_t> indexes) {
assert(data_.size() == indexes.size());
std::vector<int> new_data(data_.size());
for (size_t i = 0; i < data_.size(); ++i) {
new_data[i] = data_[indexes[i]];
}
data_.swap(new_data);
}
std::string name() const { return name_; }
DataType type() const { return type_; }
const std::vector<int>& data() const { return data_; }
int operator[](std::size_t idx) const { return data_[idx]; }
// Returns the original value (not an encoded ID) at the given position.
std::string ValueAt(std::size_t idx) const {
// For INT column just return the value.
if (string_dict_.empty()) return absl::StrCat(data_[idx]);
// For STRING column reverse the mapping.
return std::find_if(
string_dict_.begin(), string_dict_.end(),
[this, idx](const auto& kv) { return kv.second == data_[idx]; })
->first;
}
std::vector<int> distinct_values() const {
return std::vector<int>(distinct_values_.begin(), distinct_values_.end());
}
std::size_t num_rows() const { return data_.size(); }
std::size_t num_distinct_values() const { return distinct_values_.size(); }
int min() const { return min_; }
int max() const { return max_; }
std::size_t compressed_size_bytes(size_t num_rows_per_stripe) const {
const size_t num_stripes = data_.size() / num_rows_per_stripe;
size_t compressed_size = 0;
// Compress the stripes individually.
for (size_t stripe = 0; stripe < num_stripes; ++stripe) {
const size_t start_row = stripe * num_rows_per_stripe;
if (type_ == DataType::INT) {
assert(start_row + num_rows_per_stripe <= data_.size());
const absl::string_view data_view =
absl::string_view(reinterpret_cast<const char*>(&data_[start_row]),
sizeof(data_[0]) * num_rows_per_stripe);
compressed_size += ci::Compress(data_view).size();
} else {
assert(start_row + num_rows_per_stripe <= str_data_.size());
// Encode the var-length strings, each as var-int32 length followed by
// the actual string-data.
ByteBuffer buffer;
for (size_t i = 0; i < num_rows_per_stripe; ++i)
PutString(str_data_[start_row + i], &buffer);
compressed_size +=
ci::Compress(absl::string_view(buffer.data(), buffer.pos())).size();
}
}
return compressed_size;
}
private:
Column(const std::string& name, const DataType type, std::vector<int> data)
: name_(name), type_(type), data_(std::move(data)) {
assert(type <= DataType::INT);
// Initialize `distinct_values_`.
distinct_values_ = std::unordered_set<int>(data_.begin(), data_.end());
// Set `min_` and `max_`.
const auto min_max = std::minmax_element(begin(data_), end(data_));
min_ = *min_max.first;
max_ = *min_max.second;
// Compute standard moments.
mean_ = boost::math::tools::mean(data_);
variance_ = boost::math::tools::variance(data_);
skewness_ = boost::math::tools::skewness(data_);
kurtosis_ = boost::math::tools::kurtosis(data_);
PrintStats();
}
std::string name_;
DataType type_;
std::vector<int> data_;
std::unordered_set<int> distinct_values_;
// Used to map strings to ints in an order-preserving way.
std::unordered_map<std::string, int> string_dict_;
// The original vector of strings if given to the c'tor.
const std::vector<std::string> str_data_;
// Stats.
int min_, max_;
// Standard moments: mean, variance, skewness, and excess kurtosis.
// https://www.gnu.org/software/gsl/doc/html/statistics.html
double mean_, variance_, skewness_, kurtosis_;
};
// Used for parsing a column from a CSV file.
struct CsvColumnInfo {
CsvColumnInfo(const std::string& name, const DataType type,
const std::size_t index)
: name(name), type(type), index(index) {}
std::string name;
DataType type;
// Index (offset) in CSV.
std::size_t index;
};
class Table {
public:
static std::unique_ptr<Table> FromCsv(
const std::string& file_path,
const std::vector<std::string> column_names) {
csv::CSVReader reader(file_path);
// Make sure all the requested columns are present and map positions in
// `column_names` to column positions in the data.
std::vector<std::string> present_column_names = reader.get_col_names();
std::vector<CsvColumnInfo> column_infos;
column_infos.reserve(column_names.size());
for (const std::string& column_name : column_names) {
auto pos = std::find(present_column_names.begin(),
present_column_names.end(), column_name);
if (pos == present_column_names.end()) {
std::cerr << "Unknown column '" << column_name
<< "'. Available columns: "
<< absl::StrJoin(present_column_names, ",") << std::endl;
std::exit(EXIT_FAILURE);
}
// Create ColumnInfo`
column_infos.push_back(
CsvColumnInfo{.name = column_name,
.type = DataType::STRING,
.index = static_cast<size_t>(
std::distance(present_column_names.begin(), pos))});
}
std::vector<std::vector<std::string>> csv_data(column_names.size());
for (csv::CSVRow& row : reader) {
for (size_t i = 0; i < column_names.size(); ++i) {
csv_data[i].push_back(row[column_infos[i].index].get<std::string>());
}
}
for (size_t i = 0; i < csv_data.size(); ++i) {
bool is_column_int = true;
for (const std::string& value : csv_data[i]) {
if (value != Column::kStringNullSentinel &&
!std::all_of(value.begin(), value.end(),
[](unsigned char c) { return std::isdigit(c); })) {
is_column_int = false;
break;
}
}
if (is_column_int) {
// If the column is an integer column, change its type to
// DataType::INT and convert all sentinel values.
column_infos[i].type = DataType::INT;
for (std::string& value : csv_data[i]) {
if (value == Column::kStringNullSentinel) {
value = absl::StrCat(Column::kIntNullSentinel);
}
}
}
}
// Create columns.
std::vector<std::unique_ptr<Column>> columns;
columns.reserve(column_infos.size());
for (size_t i = 0; i < column_infos.size(); ++i) {
const CsvColumnInfo& info = column_infos[i];
columns.push_back(
absl::make_unique<Column>(info.name, info.type, csv_data[i]));
}
return std::unique_ptr<Table>(new Table("test_table", std::move(columns)));
}
static std::unique_ptr<Table> Create(
const std::string& name, std::vector<std::unique_ptr<Column>> columns) {
size_t num_rows = columns[0]->num_rows();
for (const std::unique_ptr<Column>& column : columns) {
if (column->num_rows() != num_rows) {
std::cerr << "Incorrect number of rows: expected " << num_rows
<< ", got " << column->num_rows() << std::endl;
std::exit(EXIT_FAILURE);
}
}
return std::unique_ptr<Table>(new Table(name, std::move(columns)));
}
const Column& GetColumn(const std::string& name) {
for (const ColumnPtr& column : columns_) {
if (column->name() == name) return *column;
}
std::cerr << "Column " << name << " not found." << std::endl;
exit(EXIT_FAILURE);
}
const std::vector<std::unique_ptr<Column>>& GetColumns() { return columns_; }
void PrintHeader() const {
for (size_t i = 0; i < columns_.size(); ++i) {
std::cout << columns_[i]->name();
if (i < columns_.size() - 1) std::cout << ",";
}
std::cout << std::endl;
}
void PrintColumns() const {
for (const std::unique_ptr<Column>& column : columns_) {
column->PrintStats();
}
}
// Randomly shuffles the table rows for all columns.
void Shuffle() {
std::vector<size_t> indexes(columns_[0]->num_rows());
std::iota(indexes.begin(), indexes.end(), 0);
absl::BitGen gen;
std::shuffle(indexes.begin(), indexes.end(), gen);
for (std::unique_ptr<Column>& column : columns_) {
column->Reorder(indexes);
}
}
// Sorts the table rows using columns ordered by cardinality as the key.
void SortWithCardinalityKey() {
// Sort the columns by cardinality.
std::vector<std::pair<size_t, size_t>> cardinality_and_index;
cardinality_and_index.reserve(columns_.size());
for (size_t i = 0; i < columns_.size(); ++i) {
cardinality_and_index.emplace_back(columns_[i]->num_distinct_values(), i);
}
std::sort(cardinality_and_index.begin(), cardinality_and_index.end());
// Create a comparator that compares values according to the determined
// column order.
std::function<bool(size_t, size_t)> comparator = [&](size_t row_id,
size_t other_row_id) {
for (const auto& [_, column_index] : cardinality_and_index) {
if ((*columns_[column_index])[row_id] <
(*columns_[column_index])[other_row_id]) {
return true;
} else if ((*columns_[column_index])[row_id] >
(*columns_[column_index])[other_row_id]) {
return false;
}
}
return false;
};
// Sort rows indexes using the comparator and reorder all columns.
std::vector<size_t> indexes(columns_[0]->num_rows());
std::iota(indexes.begin(), indexes.end(), 0);
std::sort(indexes.begin(), indexes.end(), comparator);
for (std::unique_ptr<Column>& column : columns_) {
column->Reorder(indexes);
}
}
std::string ToCsvString() const {
std::string csv_string;
if (columns_.empty()) return csv_string;
const size_t num_rows = columns_[0]->num_rows();
for (size_t row_id = 0; row_id < num_rows; ++row_id) {
for (size_t column_id = 0; column_id < columns_.size(); ++column_id) {
if (column_id != 0) absl::StrAppend(&csv_string, ",");
absl::StrAppend(&csv_string, columns_[column_id]->ValueAt(row_id));
}
absl::StrAppend(&csv_string, "\n");
}
return csv_string;
}
private:
Table(const std::string& name, std::vector<std::unique_ptr<Column>> columns)
: name_(name), columns_(std::move(columns)) {}
std::string name_;
std::vector<ColumnPtr> columns_;
};
// Creates a table with a single column with uniformly distributed values.
std::unique_ptr<Table> GenerateUniformData(const size_t generate_num_values,
const size_t num_unique_values);
} // namespace ci
#endif // CUCKOO_INDEX_DATA_H_