-
Notifications
You must be signed in to change notification settings - Fork 570
[Problem/ Squad V2] the result is too low compare with the F1 score in paper, Is something wrong? #230
Comments
flags.DEFINE_string( flags.DEFINE_string("vocab_file", 'albert_xlarge/30k-clean.vocab', flags.DEFINE_string("spm_model_file", 'albert_xlarge/30k-clean.model', flags.DEFINE_string( Other parametersflags.DEFINE_string("train_file", '/home/gszhang/code/NLP/albert/train-v2.0.json', flags.DEFINE_string( flags.DEFINE_string("train_feature_file", '/home/gszhang/code/NLP/albert/result/train_feature', flags.DEFINE_string( flags.DEFINE_string( flags.DEFINE_string( flags.DEFINE_string( flags.DEFINE_bool( flags.DEFINE_integer( flags.DEFINE_integer( flags.DEFINE_integer( flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_predict", True, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 8, "Total batch size for training.") flags.DEFINE_integer("predict_batch_size", 8, flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_float("num_train_epochs", 3.0, flags.DEFINE_float( flags.DEFINE_integer("save_checkpoints_steps", 1000, flags.DEFINE_integer("iterations_per_loop", 1000, flags.DEFINE_integer( flags.DEFINE_integer( flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( tf.flags.DEFINE_string( tf.flags.DEFINE_string( tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( flags.DEFINE_integer("start_n_top", 5, "beam size for the start positions.") flags.DEFINE_integer("end_n_top", 5, "beam size for the end positions.") flags.DEFINE_float("dropout_prob", 0.1, "dropout probability.") this is what I set in run_squad_v2, I can't find the problem, Thanks for your help! |
And the feature file is not exist, it is generated when I am running the .py. |
hi, I meet the same problem, since i use the gpu to run the code, and i change TPUEstimator to Estimator and change TPUEstimatorSpec to EstimatorSpec, and the problem was solved, and can get the f1 score as paper |
@Huibin-Ge - Is it possible to provide your notebook file or code which you are using. I am facing issues in running fine-tuning of albert base using SQuAD 2.0 and training doesn't start and stopped abruptly without any error. |
same problem |
hi, I meet the same problem, the result is too low, can you tell me how to change TPUEstimator to Estimator and change TPUEstimatorSpec to EstimatorSpec? |
Hi, I public my fixed code in https://github.com/huibinGe/albert_gpu_squad. TPUEstimator to Estimator mainly in run_squad_v2.py and TPUEstimatorSpec to EstimatorSpec mainly in squad_utils.py |
I0922 11:46:38.663871 140308634334976 run_squad_v2.py:505] ***** Final Eval results *****
INFO:tensorflow: exact = 50.09685841825992
I0922 11:46:38.663987 140308634334976 run_squad_v2.py:507] exact = 50.09685841825992
INFO:tensorflow: f1 = 50.11359538016659
I0922 11:46:38.664040 140308634334976 run_squad_v2.py:507] f1 = 50.11359538016659
INFO:tensorflow: null_score_diff_threshold = -1.230899453163147
I0922 11:46:38.664077 140308634334976 run_squad_v2.py:507] null_score_diff_threshold = -1.230899453163147
INFO:tensorflow: total = 11873
I0922 11:46:38.664113 140308634334976 run_squad_v2.py:507] total = 11873
The text was updated successfully, but these errors were encountered: