This repository contains an implementation of different physics inspired models used in the papers: SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision and Which priors matter? Benchmarking models for learning latent dynamics.
This is purely research code, provided with no further intentions of support or any guarantees of backward compatibility.
All package requirements are listed in requirements.txt
.
You will still need to download and setup the datasets from the
DeepMind Hamiltonian Dynamics Suite manually.
git clone [email protected]:deepmind/deepmind-research.git
pip install -r ./deepmind_research/physics_inspired_models/requirements.txt
pip install ./deepmind_research/physics_inspired_models
pip install --upgrade "jax[XXX]"
where XXX
is the correct type of accelerator that you have on your machine.
Note that if you are using a GPU you might need XXX
to also include the
correct version of CUDA and cuDNN installed on your machine.
For more details please read here.
The file jaxline_configs.py
contains all the configurations specifications for
the experiments in the two papers. To run an experiment, in addition to passing
the location of the configs file, you must provide extra arguments in the
following manner:
${name_of_configuration},${index_in_sweep},${dataset_name}
For example to run the second hyper-parameter configuration of the improved Hamiltonian Generative Network (HGN++) on the mass-spring dataset you should run in the command line (assuming that you are in the folder of the project):
python3 jaxline_train.py \
--config="jaxline_configs.py:sym_metric_hgn_plus_plus_sweep,1,toy_physics/mass_spring" \
--jaxline_mode="train" \
--logtostderr
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
Irina Higgins, Peter Wirnsberger, Andrew Jaegle, Aleksandar Botev
URL: https://openreview.net/forum?id=9Qu0U9Fj7IP
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev, Drew Jaegle, Peter Wirnsberger, Daniel Hennes and Irina Higgins