forked from tyliupku/soft-label-RE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattmodel.py
260 lines (238 loc) · 12.4 KB
/
attmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 17-3-21 下午1:50
# @Author : Tianyu Liu
import tensorflow as tf
import numpy as np
import util, sys
class model(object):
def __init__(self, pad_len, num_rels, word_vectors, window_size, num_filters, embedding_size, pos_embedding, dropout, batch_num, joint_p, l2_reg=0.0):
self.input = tf.placeholder(tf.int32, [None, pad_len], name="input")
self.preds = tf.placeholder(tf.int32, [None, num_rels], name="preds")
self.num_filters = num_filters
self.mask1 = tf.placeholder(tf.float32, [None, pad_len - window_size + 1, self.num_filters], name="mask_before")
self.mask2 = tf.placeholder(tf.float32, [None, pad_len - window_size + 1, self.num_filters], name="mask_between")
self.mask3 = tf.placeholder(tf.float32, [None, pad_len - window_size + 1, self.num_filters], name="mask_after")
self.wps1 = tf.placeholder(tf.int32, [None, pad_len], name="wps1")
self.wps2 = tf.placeholder(tf.int32, [None, pad_len], name="wps2")
self.pad_len = pad_len
self.window_size = window_size
self.num_rels = num_rels
self.PAD = len(word_vectors) - 1
self.bag_num = tf.placeholder(tf.int32, [batch_num + 1], name="bag_num")
self.soft_label_flag = tf.placeholder(tf.float32, [batch_num], name="soft_label_flag")
self.joint_p = joint_p
total_num = self.bag_num[-1]
self.batch_num = batch_num
l2_loss = tf.constant(0.0)
with tf.device('/cpu:0'):
self.embedding = tf.Variable(word_vectors, dtype=tf.float32)
self.inputs = tf.nn.embedding_lookup(self.embedding, self.input)
with tf.name_scope('joint'):
wpe1 = tf.get_variable("wpe1", shape=[62, pos_embedding], initializer=tf.contrib.layers.xavier_initializer())
wpe2 = tf.get_variable("wpe2", shape=[62, pos_embedding], initializer=tf.contrib.layers.xavier_initializer())
pos_left = tf.nn.embedding_lookup(wpe1, self.wps1)
pos_right = tf.nn.embedding_lookup(wpe2, self.wps2)
self.pos_embed = tf.concat([pos_left, pos_right], 2)
with tf.name_scope('conv'):
self._input = tf.concat([self.inputs, self.pos_embed], 2)
filter_shape = [window_size, embedding_size + 2*pos_embedding, 1, num_filters]
W = tf.get_variable("conv-W", shape=filter_shape, initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable("conv-b", shape=[num_filters], initializer=tf.contrib.layers.xavier_initializer())
self.conv = tf.nn.conv2d(tf.expand_dims(self._input, -1), W, strides=[1, 1, 1, 1], padding="VALID", name="conv")
h = tf.nn.tanh(tf.nn.bias_add(self.conv, b), name="tanh")
self.h1 = tf.add(h, tf.expand_dims(self.mask1, 2))
self.h2 = tf.add(h, tf.expand_dims(self.mask2, 2))
self.h3 = tf.add(h, tf.expand_dims(self.mask3, 2))
pooled1 = tf.nn.max_pool(self.h1, ksize=[1, self.pad_len - self.window_size + 1, 1, 1], strides=[1, 1, 1, 1], padding="VALID",name="pool")
poolre1 = tf.reshape(pooled1, [-1, self.num_filters])
pooled2 = tf.nn.max_pool(self.h2, ksize=[1, self.pad_len - self.window_size + 1, 1, 1], strides=[1, 1, 1, 1], padding="VALID",name="pool")
poolre2 = tf.reshape(pooled2, [-1, self.num_filters])
pooled3 = tf.nn.max_pool(self.h3, ksize=[1, self.pad_len - self.window_size + 1, 1, 1], strides=[1, 1, 1, 1], padding="VALID",name="pool")
poolre3 = tf.reshape(pooled3, [-1, self.num_filters])
poolre = tf.concat([poolre1, poolre2, poolre3], 1)
pooled = tf.nn.dropout(poolre, dropout)
with tf.name_scope("map"):
W = tf.get_variable(
"W",
shape=[3*self.num_filters, self.num_rels],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable("b", shape=[self.num_rels], initializer=tf.contrib.layers.xavier_initializer())
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
# the implementation of Lin et al 2016 comes from https://github.com/thunlp/TensorFlow-NRE/blob/master/network.py
sen_a = tf.get_variable("attention_A", [3*self.num_filters], initializer=tf.contrib.layers.xavier_initializer())
sen_q = tf.get_variable("query", [3*self.num_filters, 1], initializer=tf.contrib.layers.xavier_initializer())
sen_r = []
sen_s = []
sen_out = []
sen_alpha = []
self.bag_score = []
self.predictions = []
self.losses = []
self.accuracy = []
self.total_loss = 0.0
# selective attention model, use the weighted sum of all related the sentence vectors as bag representation
for i in range(batch_num):
sen_r.append(pooled[self.bag_num[i]:self.bag_num[i+1]])
bag_size = self.bag_num[i+1] - self.bag_num[i]
sen_alpha.append(tf.reshape(tf.nn.softmax(tf.reshape(tf.matmul(tf.multiply(sen_r[i], sen_a), sen_q), [bag_size])), [1, bag_size]))
sen_s.append(tf.reshape(tf.matmul(sen_alpha[i], sen_r[i]), [1, 3*self.num_filters]))
sen_out.append(tf.reshape(tf.nn.xw_plus_b(sen_s[i], W, b), [self.num_rels]))
self.bag_score.append(tf.nn.softmax(sen_out[i]))
with tf.name_scope("output"):
self.predictions.append(tf.argmax(self.bag_score[i], 0, name="predictions"))
with tf.name_scope("loss"):
nscor = self.soft_label_flag[i] * self.bag_score[i] + joint_p * tf.reduce_max(self.bag_score[i])* tf.cast(self.preds[i], tf.float32)
self.nlabel = tf.reshape(tf.one_hot(indices=[tf.argmax(nscor, 0)], depth=self.num_rels, dtype=tf.int32), [self.num_rels])
self.ccc = self.preds[i]
self.losses.append(tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=sen_out[i], labels=self.nlabel)))
if i == 0:
self.total_loss = self.losses[i]
else:
self.total_loss += self.losses[i]
with tf.name_scope("accuracy"):
self.accuracy.append(tf.reduce_mean(tf.cast(tf.equal(self.predictions[i], tf.argmax(self.preds[i], 0)), "float"), name="accuracy"))
with tf.name_scope("update"):
self.global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
self.train_op = optimizer.minimize(self.total_loss, global_step=self.global_step)
# pad sentences for piecewise max-pooling operation described in
# "Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks"
def sen_padding(self, sen_id, instance, lpos, rpos, real_sen, namepos):
# instance :[5, 233, 3232, ...] sentences in bag
instances = []
mask_before = []
mask_between= []
mask_after = []
lwps = []
rwps = []
for id in instance:
seq = sen_id[id]
wps_left = lpos[id]
wps_right = rpos[id]
en1, en2 = namepos[id]
t1, t2 = self.get_split(en1, en2)
seq_len = len(real_sen[id].split())
assert seq_len <= self.pad_len
if seq_len <= self.pad_len:
mask1 = np.zeros([self.pad_len-self.window_size+1, self.num_filters], dtype=float)
mask1[t1+1:, :] = -100.0
mask2 = np.zeros([self.pad_len-self.window_size+1, self.num_filters], dtype=float)
mask2[:t1, :] = -100.0
mask2[t2+1:, :] = -100.0
mask3 = np.zeros([self.pad_len - self.window_size + 1, self.num_filters], dtype=float)
mask3[:t2, :] = -100.0
mask3[seq_len-self.window_size+1:, :] = -100.0
# mask = [1] * (seq_len-self.window_size+1) + [0] * (self.pad_len-seq_len)
if len(seq) < self.pad_len:
llen = self.pad_len - len(seq)
seq.extend([self.PAD] * (self.pad_len - len(seq)))
wps_left.extend([61] * llen)
wps_right.extend([61] * llen)
mask_before.append(mask1)
mask_between.append(mask2)
mask_after.append(mask3)
instances.append(seq)
lwps.append(wps_left)
rwps.append(wps_right)
return instances, mask_before, mask_between, mask_after, lwps, rwps
def get_split(self, en1, en2):
t1, t2 = en1, en2
if en1 > en2:
t1 = en2
t2 = en1
assert t1 <= t2
return t1,t2
def train(self, sess, bag_key, train_bag, sen_id, lpos, rpos, real_sen, namepos, use_soft_label = False):
# bag_key: mid1 mid2 rel
batch = []
pred = []
mask_before = []
mask_between = []
mask_after = []
wps_left = []
wps_right = []
batch_sen_num = []
soft_label_flag = []
cnt_sen = 0
for key in bag_key:
rel = int(key.split('\t')[-1])
if use_soft_label:soft_label_flag.append(1)
else:soft_label_flag.append(0)
sentences = train_bag[key]
sen_vec, mask_bef, mask_bet, mask_aft, llpos, rrpos = self.sen_padding(sen_id, sentences, lpos, rpos, real_sen, namepos)
batch.extend(sen_vec)
mask_before.extend(mask_bef)
mask_between.extend(mask_bet)
mask_after.extend(mask_aft)
pred.append(rel)
wps_left.extend(llpos)
wps_right.extend(rrpos)
batch_sen_num.append(cnt_sen)
cnt_sen += len(sentences)
batch_sen_num.append(cnt_sen)
preds = np.zeros([len(bag_key), self.num_rels])
preds[np.arange(len(bag_key)), pred] = 1
_, hh, loss, acc, step = sess.run([self.train_op, self.h1, self.total_loss, self.accuracy, self.global_step], feed_dict={
self.input: batch,
self.mask1: mask_before,
self.mask2: mask_between,
self.mask3: mask_after,
self.preds: preds,
self.wps1: wps_left,
self.wps2: wps_right,
self.bag_num: batch_sen_num,
self.soft_label_flag: soft_label_flag
})
assert np.min(np.max(hh, axis=1)) > -50.0
acc = np.reshape(np.array(acc), (self.batch_num))
acc = np.mean(acc)
return loss
def test(self, sess, bag_key, test_bag, sen_id, lpos, rpos, real_sen, namepos):
# bag_key: mid1 mid2
pair_score = []
cnt_i = 1
batches = util.batch_iter(bag_key, self.batch_num, 1, shuffle=True)
for bat in batches:
if len(bat) < self.batch_num:
continue
batch = []
mask_before = []
mask_between = []
mask_after = []
wps_left = []
wps_right = []
batch_sen_num = []
cnt_sen = 0
for key in bat:
# sys.stdout.write('testing %d cases...\r' % cnt_i
# sys.stdout.flush()
cnt_i += 1
sentences = test_bag[key]
sen_vec, mask_bef, mask_bet, mask_aft, llpos, rrpos = self.sen_padding(sen_id, sentences, lpos, rpos, real_sen, namepos)
batch.extend(sen_vec)
mask_before.extend(mask_bef)
mask_between.extend(mask_bet)
mask_after.extend(mask_aft)
wps_left.extend(llpos)
wps_right.extend(rrpos)
batch_sen_num.append(cnt_sen)
cnt_sen += len(sentences)
batch_sen_num.append(cnt_sen)
soft_label_flag = [0] * len(bat)
scores = sess.run(self.bag_score, feed_dict={
self.input: batch,
self.mask1: mask_before,
self.mask2: mask_between,
self.mask3: mask_after,
self.wps1: wps_left,
self.wps2: wps_right,
self.bag_num: batch_sen_num,
self.soft_label_flag: soft_label_flag})
# score = np.max(scores, axis=0)
for k, key in enumerate(bat):
for i, sc in enumerate(scores[k]):
if i==0: continue
pair_score.append({"mid": key, "rel": i, "score": sc})
return pair_score