-
Notifications
You must be signed in to change notification settings - Fork 17.9k
/
Copy pathmheap.go
1090 lines (985 loc) · 31.3 KB
/
mheap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Page heap.
//
// See malloc.go for overview.
package runtime
import "unsafe"
// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
type mheap struct {
lock mutex
free [_MaxMHeapList]mspan // free lists of given length
freelarge mspan // free lists length >= _MaxMHeapList
busy [_MaxMHeapList]mspan // busy lists of large objects of given length
busylarge mspan // busy lists of large objects length >= _MaxMHeapList
allspans **mspan // all spans out there
gcspans **mspan // copy of allspans referenced by gc marker or sweeper
nspan uint32
sweepgen uint32 // sweep generation, see comment in mspan
sweepdone uint32 // all spans are swept
// span lookup
spans **mspan
spans_mapped uintptr
// Proportional sweep
spanBytesAlloc uint64 // bytes of spans allocated this cycle; updated atomically
pagesSwept uint64 // pages swept this cycle; updated atomically
sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
// Malloc stats.
largefree uint64 // bytes freed for large objects (>maxsmallsize)
nlargefree uint64 // number of frees for large objects (>maxsmallsize)
nsmallfree [_NumSizeClasses]uint64 // number of frees for small objects (<=maxsmallsize)
// range of addresses we might see in the heap
bitmap uintptr
bitmap_mapped uintptr
arena_start uintptr
arena_used uintptr // always mHeap_Map{Bits,Spans} before updating
arena_end uintptr
arena_reserved bool
// central free lists for small size classes.
// the padding makes sure that the MCentrals are
// spaced CacheLineSize bytes apart, so that each MCentral.lock
// gets its own cache line.
central [_NumSizeClasses]struct {
mcentral mcentral
pad [_CacheLineSize]byte
}
spanalloc fixalloc // allocator for span*
cachealloc fixalloc // allocator for mcache*
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
specialprofilealloc fixalloc // allocator for specialprofile*
speciallock mutex // lock for special record allocators.
}
var mheap_ mheap
// An MSpan is a run of pages.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse or MSpanStack
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists. We use empty MSpan structures as list heads.
// An MSpan representing actual memory has state _MSpanInUse,
// _MSpanStack, or _MSpanFree. Transitions between these states are
// constrained as follows:
//
// * A span may transition from free to in-use or stack during any GC
// phase.
//
// * During sweeping (gcphase == _GCoff), a span may transition from
// in-use to free (as a result of sweeping) or stack to free (as a
// result of stacks being freed).
//
// * During GC (gcphase != _GCoff), a span *must not* transition from
// stack or in-use to free. Because concurrent GC may read a pointer
// and then look up its span, the span state must be monotonic.
const (
_MSpanInUse = iota // allocated for garbage collected heap
_MSpanStack // allocated for use by stack allocator
_MSpanFree
_MSpanListHead
_MSpanDead
)
type mspan struct {
next *mspan // in a span linked list
prev *mspan // in a span linked list
start pageID // starting page number
npages uintptr // number of pages in span
freelist gclinkptr // list of free objects
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// h->sweepgen is incremented by 2 after every GC
sweepgen uint32
divMul uint32 // for divide by elemsize - divMagic.mul
ref uint16 // capacity - number of objects in freelist
sizeclass uint8 // size class
incache bool // being used by an mcache
state uint8 // mspaninuse etc
needzero uint8 // needs to be zeroed before allocation
divShift uint8 // for divide by elemsize - divMagic.shift
divShift2 uint8 // for divide by elemsize - divMagic.shift2
elemsize uintptr // computed from sizeclass or from npages
unusedsince int64 // first time spotted by gc in mspanfree state
npreleased uintptr // number of pages released to the os
limit uintptr // end of data in span
speciallock mutex // guards specials list
specials *special // linked list of special records sorted by offset.
baseMask uintptr // if non-0, elemsize is a power of 2, & this will get object allocation base
}
func (s *mspan) base() uintptr {
return uintptr(s.start << _PageShift)
}
func (s *mspan) layout() (size, n, total uintptr) {
total = s.npages << _PageShift
size = s.elemsize
if size > 0 {
n = total / size
}
return
}
var h_allspans []*mspan // TODO: make this h.allspans once mheap can be defined in Go
// h_spans is a lookup table to map virtual address page IDs to *mspan.
// For allocated spans, their pages map to the span itself.
// For free spans, only the lowest and highest pages map to the span itself. Internal
// pages map to an arbitrary span.
// For pages that have never been allocated, h_spans entries are nil.
var h_spans []*mspan // TODO: make this h.spans once mheap can be defined in Go
func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
h := (*mheap)(vh)
s := (*mspan)(p)
if len(h_allspans) >= cap(h_allspans) {
n := 64 * 1024 / ptrSize
if n < cap(h_allspans)*3/2 {
n = cap(h_allspans) * 3 / 2
}
var new []*mspan
sp := (*slice)(unsafe.Pointer(&new))
sp.array = sysAlloc(uintptr(n)*ptrSize, &memstats.other_sys)
if sp.array == nil {
throw("runtime: cannot allocate memory")
}
sp.len = len(h_allspans)
sp.cap = n
if len(h_allspans) > 0 {
copy(new, h_allspans)
// Don't free the old array if it's referenced by sweep.
// See the comment in mgc.go.
if h.allspans != mheap_.gcspans {
sysFree(unsafe.Pointer(h.allspans), uintptr(cap(h_allspans))*ptrSize, &memstats.other_sys)
}
}
h_allspans = new
h.allspans = (**mspan)(unsafe.Pointer(sp.array))
}
h_allspans = append(h_allspans, s)
h.nspan = uint32(len(h_allspans))
}
// inheap reports whether b is a pointer into a (potentially dead) heap object.
// It returns false for pointers into stack spans.
// Non-preemptible because it is used by write barriers.
//go:nowritebarrier
//go:nosplit
func inheap(b uintptr) bool {
if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
return false
}
// Not a beginning of a block, consult span table to find the block beginning.
k := b >> _PageShift
x := k
x -= mheap_.arena_start >> _PageShift
s := h_spans[x]
if s == nil || pageID(k) < s.start || b >= s.limit || s.state != mSpanInUse {
return false
}
return true
}
// TODO: spanOf and spanOfUnchecked are open-coded in a lot of places.
// Use the functions instead.
// spanOf returns the span of p. If p does not point into the heap or
// no span contains p, spanOf returns nil.
func spanOf(p uintptr) *mspan {
if p == 0 || p < mheap_.arena_start || p >= mheap_.arena_used {
return nil
}
return spanOfUnchecked(p)
}
// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
// that p points into the heap (that is, mheap_.arena_start <= p <
// mheap_.arena_used).
func spanOfUnchecked(p uintptr) *mspan {
return h_spans[(p-mheap_.arena_start)>>_PageShift]
}
func mlookup(v uintptr, base *uintptr, size *uintptr, sp **mspan) int32 {
_g_ := getg()
_g_.m.mcache.local_nlookup++
if ptrSize == 4 && _g_.m.mcache.local_nlookup >= 1<<30 {
// purge cache stats to prevent overflow
lock(&mheap_.lock)
purgecachedstats(_g_.m.mcache)
unlock(&mheap_.lock)
}
s := mHeap_LookupMaybe(&mheap_, unsafe.Pointer(v))
if sp != nil {
*sp = s
}
if s == nil {
if base != nil {
*base = 0
}
if size != nil {
*size = 0
}
return 0
}
p := uintptr(s.start) << _PageShift
if s.sizeclass == 0 {
// Large object.
if base != nil {
*base = p
}
if size != nil {
*size = s.npages << _PageShift
}
return 1
}
n := s.elemsize
if base != nil {
i := (uintptr(v) - uintptr(p)) / n
*base = p + i*n
}
if size != nil {
*size = n
}
return 1
}
// Initialize the heap.
func mHeap_Init(h *mheap, spans_size uintptr) {
fixAlloc_Init(&h.spanalloc, unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
fixAlloc_Init(&h.cachealloc, unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
fixAlloc_Init(&h.specialfinalizeralloc, unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
fixAlloc_Init(&h.specialprofilealloc, unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
// h->mapcache needs no init
for i := range h.free {
mSpanList_Init(&h.free[i])
mSpanList_Init(&h.busy[i])
}
mSpanList_Init(&h.freelarge)
mSpanList_Init(&h.busylarge)
for i := range h.central {
mCentral_Init(&h.central[i].mcentral, int32(i))
}
sp := (*slice)(unsafe.Pointer(&h_spans))
sp.array = unsafe.Pointer(h.spans)
sp.len = int(spans_size / ptrSize)
sp.cap = int(spans_size / ptrSize)
}
// mHeap_MapSpans makes sure that the spans are mapped
// up to the new value of arena_used.
//
// It must be called with the expected new value of arena_used,
// *before* h.arena_used has been updated.
// Waiting to update arena_used until after the memory has been mapped
// avoids faults when other threads try access the bitmap immediately
// after observing the change to arena_used.
func mHeap_MapSpans(h *mheap, arena_used uintptr) {
// Map spans array, PageSize at a time.
n := arena_used
n -= h.arena_start
n = n / _PageSize * ptrSize
n = round(n, _PhysPageSize)
if h.spans_mapped >= n {
return
}
sysMap(add(unsafe.Pointer(h.spans), h.spans_mapped), n-h.spans_mapped, h.arena_reserved, &memstats.other_sys)
h.spans_mapped = n
}
// Sweeps spans in list until reclaims at least npages into heap.
// Returns the actual number of pages reclaimed.
func mHeap_ReclaimList(h *mheap, list *mspan, npages uintptr) uintptr {
n := uintptr(0)
sg := mheap_.sweepgen
retry:
for s := list.next; s != list; s = s.next {
if s.sweepgen == sg-2 && cas(&s.sweepgen, sg-2, sg-1) {
mSpanList_Remove(s)
// swept spans are at the end of the list
mSpanList_InsertBack(list, s)
unlock(&h.lock)
snpages := s.npages
if mSpan_Sweep(s, false) {
n += snpages
}
lock(&h.lock)
if n >= npages {
return n
}
// the span could have been moved elsewhere
goto retry
}
if s.sweepgen == sg-1 {
// the span is being sweept by background sweeper, skip
continue
}
// already swept empty span,
// all subsequent ones must also be either swept or in process of sweeping
break
}
return n
}
// Sweeps and reclaims at least npage pages into heap.
// Called before allocating npage pages.
func mHeap_Reclaim(h *mheap, npage uintptr) {
// First try to sweep busy spans with large objects of size >= npage,
// this has good chances of reclaiming the necessary space.
for i := int(npage); i < len(h.busy); i++ {
if mHeap_ReclaimList(h, &h.busy[i], npage) != 0 {
return // Bingo!
}
}
// Then -- even larger objects.
if mHeap_ReclaimList(h, &h.busylarge, npage) != 0 {
return // Bingo!
}
// Now try smaller objects.
// One such object is not enough, so we need to reclaim several of them.
reclaimed := uintptr(0)
for i := 0; i < int(npage) && i < len(h.busy); i++ {
reclaimed += mHeap_ReclaimList(h, &h.busy[i], npage-reclaimed)
if reclaimed >= npage {
return
}
}
// Now sweep everything that is not yet swept.
unlock(&h.lock)
for {
n := sweepone()
if n == ^uintptr(0) { // all spans are swept
break
}
reclaimed += n
if reclaimed >= npage {
break
}
}
lock(&h.lock)
}
// Allocate a new span of npage pages from the heap for GC'd memory
// and record its size class in the HeapMap and HeapMapCache.
func mHeap_Alloc_m(h *mheap, npage uintptr, sizeclass int32, large bool) *mspan {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("_mheap_alloc not on g0 stack")
}
lock(&h.lock)
// To prevent excessive heap growth, before allocating n pages
// we need to sweep and reclaim at least n pages.
if h.sweepdone == 0 {
// TODO(austin): This tends to sweep a large number of
// spans in order to find a few completely free spans
// (for example, in the garbage benchmark, this sweeps
// ~30x the number of pages its trying to allocate).
// If GC kept a bit for whether there were any marks
// in a span, we could release these free spans
// at the end of GC and eliminate this entirely.
mHeap_Reclaim(h, npage)
}
// transfer stats from cache to global
memstats.heap_live += uint64(_g_.m.mcache.local_cachealloc)
_g_.m.mcache.local_cachealloc = 0
memstats.heap_scan += uint64(_g_.m.mcache.local_scan)
_g_.m.mcache.local_scan = 0
memstats.tinyallocs += uint64(_g_.m.mcache.local_tinyallocs)
_g_.m.mcache.local_tinyallocs = 0
gcController.revise()
s := mHeap_AllocSpanLocked(h, npage)
if s != nil {
// Record span info, because gc needs to be
// able to map interior pointer to containing span.
atomicstore(&s.sweepgen, h.sweepgen)
s.state = _MSpanInUse
s.freelist = 0
s.ref = 0
s.sizeclass = uint8(sizeclass)
if sizeclass == 0 {
s.elemsize = s.npages << _PageShift
s.divShift = 0
s.divMul = 0
s.divShift2 = 0
s.baseMask = 0
} else {
s.elemsize = uintptr(class_to_size[sizeclass])
m := &class_to_divmagic[sizeclass]
s.divShift = m.shift
s.divMul = m.mul
s.divShift2 = m.shift2
s.baseMask = m.baseMask
}
// update stats, sweep lists
if large {
memstats.heap_objects++
memstats.heap_live += uint64(npage << _PageShift)
// Swept spans are at the end of lists.
if s.npages < uintptr(len(h.free)) {
mSpanList_InsertBack(&h.busy[s.npages], s)
} else {
mSpanList_InsertBack(&h.busylarge, s)
}
}
}
if trace.enabled {
traceHeapAlloc()
}
// h_spans is accessed concurrently without synchronization
// from other threads. Hence, there must be a store/store
// barrier here to ensure the writes to h_spans above happen
// before the caller can publish a pointer p to an object
// allocated from s. As soon as this happens, the garbage
// collector running on another processor could read p and
// look up s in h_spans. The unlock acts as the barrier to
// order these writes. On the read side, the data dependency
// between p and the index in h_spans orders the reads.
unlock(&h.lock)
return s
}
func mHeap_Alloc(h *mheap, npage uintptr, sizeclass int32, large bool, needzero bool) *mspan {
// Don't do any operations that lock the heap on the G stack.
// It might trigger stack growth, and the stack growth code needs
// to be able to allocate heap.
var s *mspan
systemstack(func() {
s = mHeap_Alloc_m(h, npage, sizeclass, large)
})
if s != nil {
if needzero && s.needzero != 0 {
memclr(unsafe.Pointer(s.start<<_PageShift), s.npages<<_PageShift)
}
s.needzero = 0
}
return s
}
func mHeap_AllocStack(h *mheap, npage uintptr) *mspan {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("mheap_allocstack not on g0 stack")
}
lock(&h.lock)
s := mHeap_AllocSpanLocked(h, npage)
if s != nil {
s.state = _MSpanStack
s.freelist = 0
s.ref = 0
memstats.stacks_inuse += uint64(s.npages << _PageShift)
}
// This unlock acts as a release barrier. See mHeap_Alloc_m.
unlock(&h.lock)
return s
}
// Allocates a span of the given size. h must be locked.
// The returned span has been removed from the
// free list, but its state is still MSpanFree.
func mHeap_AllocSpanLocked(h *mheap, npage uintptr) *mspan {
var s *mspan
// Try in fixed-size lists up to max.
for i := int(npage); i < len(h.free); i++ {
if !mSpanList_IsEmpty(&h.free[i]) {
s = h.free[i].next
goto HaveSpan
}
}
// Best fit in list of large spans.
s = mHeap_AllocLarge(h, npage)
if s == nil {
if !mHeap_Grow(h, npage) {
return nil
}
s = mHeap_AllocLarge(h, npage)
if s == nil {
return nil
}
}
HaveSpan:
// Mark span in use.
if s.state != _MSpanFree {
throw("MHeap_AllocLocked - MSpan not free")
}
if s.npages < npage {
throw("MHeap_AllocLocked - bad npages")
}
mSpanList_Remove(s)
if s.next != nil || s.prev != nil {
throw("still in list")
}
if s.npreleased > 0 {
sysUsed((unsafe.Pointer)(s.start<<_PageShift), s.npages<<_PageShift)
memstats.heap_released -= uint64(s.npreleased << _PageShift)
s.npreleased = 0
}
if s.npages > npage {
// Trim extra and put it back in the heap.
t := (*mspan)(fixAlloc_Alloc(&h.spanalloc))
mSpan_Init(t, s.start+pageID(npage), s.npages-npage)
s.npages = npage
p := uintptr(t.start)
p -= (uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift)
if p > 0 {
h_spans[p-1] = s
}
h_spans[p] = t
h_spans[p+t.npages-1] = t
t.needzero = s.needzero
s.state = _MSpanStack // prevent coalescing with s
t.state = _MSpanStack
mHeap_FreeSpanLocked(h, t, false, false, s.unusedsince)
s.state = _MSpanFree
}
s.unusedsince = 0
p := uintptr(s.start)
p -= (uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift)
for n := uintptr(0); n < npage; n++ {
h_spans[p+n] = s
}
memstats.heap_inuse += uint64(npage << _PageShift)
memstats.heap_idle -= uint64(npage << _PageShift)
//println("spanalloc", hex(s.start<<_PageShift))
if s.next != nil || s.prev != nil {
throw("still in list")
}
return s
}
// Allocate a span of exactly npage pages from the list of large spans.
func mHeap_AllocLarge(h *mheap, npage uintptr) *mspan {
return bestFit(&h.freelarge, npage, nil)
}
// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
func bestFit(list *mspan, npage uintptr, best *mspan) *mspan {
for s := list.next; s != list; s = s.next {
if s.npages < npage {
continue
}
if best == nil || s.npages < best.npages || (s.npages == best.npages && s.start < best.start) {
best = s
}
}
return best
}
// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
func mHeap_Grow(h *mheap, npage uintptr) bool {
// Ask for a big chunk, to reduce the number of mappings
// the operating system needs to track; also amortizes
// the overhead of an operating system mapping.
// Allocate a multiple of 64kB.
npage = round(npage, (64<<10)/_PageSize)
ask := npage << _PageShift
if ask < _HeapAllocChunk {
ask = _HeapAllocChunk
}
v := mHeap_SysAlloc(h, ask)
if v == nil {
if ask > npage<<_PageShift {
ask = npage << _PageShift
v = mHeap_SysAlloc(h, ask)
}
if v == nil {
print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
return false
}
}
// Create a fake "in use" span and free it, so that the
// right coalescing happens.
s := (*mspan)(fixAlloc_Alloc(&h.spanalloc))
mSpan_Init(s, pageID(uintptr(v)>>_PageShift), ask>>_PageShift)
p := uintptr(s.start)
p -= (uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift)
for i := p; i < p+s.npages; i++ {
h_spans[i] = s
}
atomicstore(&s.sweepgen, h.sweepgen)
s.state = _MSpanInUse
mHeap_FreeSpanLocked(h, s, false, true, 0)
return true
}
// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
func mHeap_Lookup(h *mheap, v unsafe.Pointer) *mspan {
p := uintptr(v)
p -= uintptr(unsafe.Pointer(h.arena_start))
return h_spans[p>>_PageShift]
}
// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans. Free spans may have
// other garbage in their middles, so we have to
// check for that.
func mHeap_LookupMaybe(h *mheap, v unsafe.Pointer) *mspan {
if uintptr(v) < uintptr(unsafe.Pointer(h.arena_start)) || uintptr(v) >= uintptr(unsafe.Pointer(h.arena_used)) {
return nil
}
p := uintptr(v) >> _PageShift
q := p
q -= uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift
s := h_spans[q]
if s == nil || p < uintptr(s.start) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != _MSpanInUse {
return nil
}
return s
}
// Free the span back into the heap.
func mHeap_Free(h *mheap, s *mspan, acct int32) {
systemstack(func() {
mp := getg().m
lock(&h.lock)
memstats.heap_live += uint64(mp.mcache.local_cachealloc)
mp.mcache.local_cachealloc = 0
memstats.heap_scan += uint64(mp.mcache.local_scan)
mp.mcache.local_scan = 0
memstats.tinyallocs += uint64(mp.mcache.local_tinyallocs)
mp.mcache.local_tinyallocs = 0
if acct != 0 {
memstats.heap_objects--
}
gcController.revise()
mHeap_FreeSpanLocked(h, s, true, true, 0)
if trace.enabled {
traceHeapAlloc()
}
unlock(&h.lock)
})
}
func mHeap_FreeStack(h *mheap, s *mspan) {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("mheap_freestack not on g0 stack")
}
s.needzero = 1
lock(&h.lock)
memstats.stacks_inuse -= uint64(s.npages << _PageShift)
mHeap_FreeSpanLocked(h, s, true, true, 0)
unlock(&h.lock)
}
func mHeap_FreeSpanLocked(h *mheap, s *mspan, acctinuse, acctidle bool, unusedsince int64) {
switch s.state {
case _MSpanStack:
if s.ref != 0 {
throw("MHeap_FreeSpanLocked - invalid stack free")
}
case _MSpanInUse:
if s.ref != 0 || s.sweepgen != h.sweepgen {
print("MHeap_FreeSpanLocked - span ", s, " ptr ", hex(s.start<<_PageShift), " ref ", s.ref, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
throw("MHeap_FreeSpanLocked - invalid free")
}
default:
throw("MHeap_FreeSpanLocked - invalid span state")
}
if acctinuse {
memstats.heap_inuse -= uint64(s.npages << _PageShift)
}
if acctidle {
memstats.heap_idle += uint64(s.npages << _PageShift)
}
s.state = _MSpanFree
mSpanList_Remove(s)
// Stamp newly unused spans. The scavenger will use that
// info to potentially give back some pages to the OS.
s.unusedsince = unusedsince
if unusedsince == 0 {
s.unusedsince = nanotime()
}
s.npreleased = 0
// Coalesce with earlier, later spans.
p := uintptr(s.start)
p -= uintptr(unsafe.Pointer(h.arena_start)) >> _PageShift
if p > 0 {
t := h_spans[p-1]
if t != nil && t.state != _MSpanInUse && t.state != _MSpanStack {
s.start = t.start
s.npages += t.npages
s.npreleased = t.npreleased // absorb released pages
s.needzero |= t.needzero
p -= t.npages
h_spans[p] = s
mSpanList_Remove(t)
t.state = _MSpanDead
fixAlloc_Free(&h.spanalloc, (unsafe.Pointer)(t))
}
}
if (p+s.npages)*ptrSize < h.spans_mapped {
t := h_spans[p+s.npages]
if t != nil && t.state != _MSpanInUse && t.state != _MSpanStack {
s.npages += t.npages
s.npreleased += t.npreleased
s.needzero |= t.needzero
h_spans[p+s.npages-1] = s
mSpanList_Remove(t)
t.state = _MSpanDead
fixAlloc_Free(&h.spanalloc, (unsafe.Pointer)(t))
}
}
// Insert s into appropriate list.
if s.npages < uintptr(len(h.free)) {
mSpanList_Insert(&h.free[s.npages], s)
} else {
mSpanList_Insert(&h.freelarge, s)
}
}
func scavengelist(list *mspan, now, limit uint64) uintptr {
if _PhysPageSize > _PageSize {
// golang.org/issue/9993
// If the physical page size of the machine is larger than
// our logical heap page size the kernel may round up the
// amount to be freed to its page size and corrupt the heap
// pages surrounding the unused block.
return 0
}
if mSpanList_IsEmpty(list) {
return 0
}
var sumreleased uintptr
for s := list.next; s != list; s = s.next {
if (now-uint64(s.unusedsince)) > limit && s.npreleased != s.npages {
released := (s.npages - s.npreleased) << _PageShift
memstats.heap_released += uint64(released)
sumreleased += released
s.npreleased = s.npages
sysUnused((unsafe.Pointer)(s.start<<_PageShift), s.npages<<_PageShift)
}
}
return sumreleased
}
func mHeap_Scavenge(k int32, now, limit uint64) {
h := &mheap_
lock(&h.lock)
var sumreleased uintptr
for i := 0; i < len(h.free); i++ {
sumreleased += scavengelist(&h.free[i], now, limit)
}
sumreleased += scavengelist(&h.freelarge, now, limit)
unlock(&h.lock)
if debug.gctrace > 0 {
if sumreleased > 0 {
print("scvg", k, ": ", sumreleased>>20, " MB released\n")
}
// TODO(dvyukov): these stats are incorrect as we don't subtract stack usage from heap.
// But we can't call ReadMemStats on g0 holding locks.
print("scvg", k, ": inuse: ", memstats.heap_inuse>>20, ", idle: ", memstats.heap_idle>>20, ", sys: ", memstats.heap_sys>>20, ", released: ", memstats.heap_released>>20, ", consumed: ", (memstats.heap_sys-memstats.heap_released)>>20, " (MB)\n")
}
}
//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
func runtime_debug_freeOSMemory() {
startGC(gcForceBlockMode, false)
systemstack(func() { mHeap_Scavenge(-1, ^uint64(0), 0) })
}
// Initialize a new span with the given start and npages.
func mSpan_Init(span *mspan, start pageID, npages uintptr) {
span.next = nil
span.prev = nil
span.start = start
span.npages = npages
span.freelist = 0
span.ref = 0
span.sizeclass = 0
span.incache = false
span.elemsize = 0
span.state = _MSpanDead
span.unusedsince = 0
span.npreleased = 0
span.speciallock.key = 0
span.specials = nil
span.needzero = 0
}
// Initialize an empty doubly-linked list.
func mSpanList_Init(list *mspan) {
list.state = _MSpanListHead
list.next = list
list.prev = list
}
func mSpanList_Remove(span *mspan) {
if span.prev == nil && span.next == nil {
return
}
span.prev.next = span.next
span.next.prev = span.prev
span.prev = nil
span.next = nil
}
func mSpanList_IsEmpty(list *mspan) bool {
return list.next == list
}
func mSpanList_Insert(list *mspan, span *mspan) {
if span.next != nil || span.prev != nil {
println("failed MSpanList_Insert", span, span.next, span.prev)
throw("MSpanList_Insert")
}
span.next = list.next
span.prev = list
span.next.prev = span
span.prev.next = span
}
func mSpanList_InsertBack(list *mspan, span *mspan) {
if span.next != nil || span.prev != nil {
println("failed MSpanList_InsertBack", span, span.next, span.prev)
throw("MSpanList_InsertBack")
}
span.next = list
span.prev = list.prev
span.next.prev = span
span.prev.next = span
}
const (
_KindSpecialFinalizer = 1
_KindSpecialProfile = 2
// Note: The finalizer special must be first because if we're freeing
// an object, a finalizer special will cause the freeing operation
// to abort, and we want to keep the other special records around
// if that happens.
)
type special struct {
next *special // linked list in span
offset uint16 // span offset of object
kind byte // kind of special
}
// Adds the special record s to the list of special records for
// the object p. All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
// already exists.)
func addspecial(p unsafe.Pointer, s *special) bool {
span := mHeap_LookupMaybe(&mheap_, p)
if span == nil {
throw("addspecial on invalid pointer")
}
// Ensure that the span is swept.
// GC accesses specials list w/o locks. And it's just much safer.
mp := acquirem()
mSpan_EnsureSwept(span)
offset := uintptr(p) - uintptr(span.start<<_PageShift)
kind := s.kind
lock(&span.speciallock)
// Find splice point, check for existing record.
t := &span.specials
for {
x := *t
if x == nil {
break
}
if offset == uintptr(x.offset) && kind == x.kind {
unlock(&span.speciallock)
releasem(mp)
return false // already exists
}
if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) {
break
}
t = &x.next
}
// Splice in record, fill in offset.
s.offset = uint16(offset)
s.next = *t
*t = s
unlock(&span.speciallock)
releasem(mp)
return true
}
// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
func removespecial(p unsafe.Pointer, kind uint8) *special {
span := mHeap_LookupMaybe(&mheap_, p)
if span == nil {
throw("removespecial on invalid pointer")
}
// Ensure that the span is swept.
// GC accesses specials list w/o locks. And it's just much safer.
mp := acquirem()
mSpan_EnsureSwept(span)
offset := uintptr(p) - uintptr(span.start<<_PageShift)
lock(&span.speciallock)
t := &span.specials
for {
s := *t
if s == nil {
break
}
// This function is used for finalizers only, so we don't check for
// "interior" specials (p must be exactly equal to s->offset).
if offset == uintptr(s.offset) && kind == s.kind {
*t = s.next
unlock(&span.speciallock)
releasem(mp)
return s
}