-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (52 loc) · 2.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
This is the main file and you can run the code from here by executing the following command.
python3 main.py --mode train
"""
import argparse
import warnings
from sklearn.metrics import classification_report
import torch
from torch.utils.data import DataLoader
from dataset.data_attributes import AttributeDataset
from dataset.data_split import split_data
from model import MultiOutputModel
from test import test
from train import train
from utils.helper_functions import zip_dataset, checkpoint_load
import utils.config as cfg
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Model Running Pipeline")
parser.add_argument("--mode", type=str, default="train")
args = parser.parse_args()
All_files = zip_dataset(cfg.DATASET_PATH)
# loading data attributes
print("Loading attributes....")
data_attrib = AttributeDataset(All_files)
# splitting the dataset and applying transformation
print("Splitting Dataset.....")
train_dataset, val_dataset, test_dataset = split_data(All_files, data_attrib)
# Dataloader
print("Calling Dataloader....")
train_loader = DataLoader(train_dataset, batch_size=cfg.TRAINING_BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=cfg.VALIDATION_BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_dataset)
# setting up the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# loading model
print("Loading Model....")
model = MultiOutputModel(
n_color_classes=data_attrib.num_colors, n_state_classes=data_attrib.num_states
).to(device)
if args.mode == "train":
train(model, train_loader, val_loader, device)
if args.mode == "test":
model = checkpoint_load(model)
results = test(model, test_dataset)
with warnings.catch_warnings():
# to ignore sklearn warnings
warnings.simplefilter("ignore")
print("Color Classification Report")
print(classification_report(results[0], results[1], target_names=data_attrib.color_classes))
print("___________________________________")
print("State Classification Report")
print(classification_report(results[2], results[3], target_names=data_attrib.state_classes))