diff --git a/output/AI Classifier/1Label_confusion_matrix_NonNorm.png b/output/AI Classifier/1Label_confusion_matrix_NonNorm.png index 716635c..67a3f52 100644 Binary files a/output/AI Classifier/1Label_confusion_matrix_NonNorm.png and b/output/AI Classifier/1Label_confusion_matrix_NonNorm.png differ diff --git a/output/AI Classifier/1Label_confusion_matrix_NormTrue.png b/output/AI Classifier/1Label_confusion_matrix_NormTrue.png index 73bf88c..951b47f 100644 Binary files a/output/AI Classifier/1Label_confusion_matrix_NormTrue.png and b/output/AI Classifier/1Label_confusion_matrix_NormTrue.png differ diff --git a/output/AI Classifier/1labelPredictionsStatsTest.txt b/output/AI Classifier/1labelPredictionsStatsTest.txt index e0192ca..f9e760d 100644 --- a/output/AI Classifier/1labelPredictionsStatsTest.txt +++ b/output/AI Classifier/1labelPredictionsStatsTest.txt @@ -1,14 +1,14 @@ -Performance measures - Unigram Dictionary - Adaboost +Performance measures - Bigram Dictionary - Adaboost Test set: -Precision macro: 0.346 -Precision Individually: [0.5 0. 0.564 0. 0.667] -Recall macro: 0.283 -Recall Individually: [0.214 0. 1. 0. 0.2 ] -F1 Score micro: 0.537 -F1 Score macro: 0.266 -F1 Score weighted: 0.442 -F1 Score Individually: [0.3 0. 0.721 0. 0.308] +Precision macro: 0.409 +Precision Individually: [0.833 0. 0.545 0. 0.667] +Recall macro: 0.305 +Recall Individually: [0.357 0. 0.968 0. 0.2 ] +F1 Score micro: 0.552 +F1 Score macro: 0.301 +F1 Score weighted: 0.473 +F1 Score Individually: [0.5 0. 0.698 0. 0.308]