diff --git a/AIclassifier.py b/AIclassifier.py index 39acbab..1d00ad5 100644 --- a/AIclassifier.py +++ b/AIclassifier.py @@ -57,7 +57,7 @@ def format_sentVector_to_SparseMatrix(vectors_list, dictionary): counts = Counter(sent_vector) for index, freq in counts.items(): if len(counts.items()) > 0: - sparse_vector[index] = 1 #freq/len(sent_vector) # DIFFERENT CONFIGURATION POSSIBILITIES # 1 + sparse_vector[index] = freq/len(sent_vector) # 1 DIFFERENT CONFIGURATION POSSIBILITIES # 1 if (i == 0): # TO DO: OPTIMIZE, NO NEED TO CHECK THIS EVERY TURN matrix_array = [sparse_vector] else: diff --git a/output/AI Classifier/1Label_confusion_matrix_NonNorm.png b/output/AI Classifier/1Label_confusion_matrix_NonNorm.png index 641d6f4..6136d03 100644 Binary files a/output/AI Classifier/1Label_confusion_matrix_NonNorm.png and b/output/AI Classifier/1Label_confusion_matrix_NonNorm.png differ diff --git a/output/AI Classifier/1Label_confusion_matrix_NormTrue.png b/output/AI Classifier/1Label_confusion_matrix_NormTrue.png index c90cdcc..a0305bb 100644 Binary files a/output/AI Classifier/1Label_confusion_matrix_NormTrue.png and b/output/AI Classifier/1Label_confusion_matrix_NormTrue.png differ diff --git a/output/AI Classifier/1labelPredictionsStatsTest.txt b/output/AI Classifier/1labelPredictionsStatsTest.txt index e6800f9..605787c 100644 --- a/output/AI Classifier/1labelPredictionsStatsTest.txt +++ b/output/AI Classifier/1labelPredictionsStatsTest.txt @@ -2,13 +2,13 @@ Performance measures - Unigram Dictionary - Adaboost Test set: -Precision macro: 0.368 -Precision Individually: [0.556 0. 0.551 0.4 0.333] -Recall macro: 0.302 -Recall Individually: [0.357 0. 0.871 0.182 0.1 ] -F1 Score micro: 0.522 -F1 Score macro: 0.303 -F1 Score weighted: 0.467 -F1 Score Individually: [0.435 0. 0.675 0.25 0.154] +Precision macro: 0.254 +Precision Individually: [0.357 0. 0.59 0.125 0.2 ] +Recall macro: 0.258 +Recall Individually: [0.357 0. 0.742 0.091 0.1 ] +F1 Score micro: 0.448 +F1 Score macro: 0.251 +F1 Score weighted: 0.416 +F1 Score Individually: [0.357 0. 0.657 0.105 0.133]