forked from Lightning-Universe/lightning-flash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
133 lines (121 loc) · 5.16 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
from functools import partial
from importlib.util import module_from_spec, spec_from_file_location
from itertools import chain
from setuptools import find_packages, setup
# https://packaging.python.org/guides/single-sourcing-package-version/
# http://blog.ionelmc.ro/2014/05/25/python-packaging/
_PATH_ROOT = os.path.dirname(__file__)
_PATH_REQUIRE = os.path.join(_PATH_ROOT, "requirements")
def _load_py_module(fname, pkg="flash"):
spec = spec_from_file_location(
os.path.join(pkg, fname),
os.path.join(_PATH_ROOT, pkg, fname),
)
py = module_from_spec(spec)
spec.loader.exec_module(py)
return py
about = _load_py_module("__about__.py")
setup_tools = _load_py_module("setup_tools.py")
long_description = setup_tools._load_readme_description(
_PATH_ROOT,
homepage=about.__homepage__,
ver=about.__version__,
)
def _expand_reqs(extras: dict, keys: list) -> list:
return list(chain(*[extras[ex] for ex in keys]))
base_req = setup_tools._load_requirements(path_dir=_PATH_ROOT, file_name="requirements.txt")
# find all extra requirements
_load_req = partial(setup_tools._load_requirements, path_dir=_PATH_REQUIRE)
SKIP_REQ_FILES = "devel.txt"
found_req_files = sorted(os.path.basename(p) for p in glob.glob(os.path.join(_PATH_REQUIRE, "*.txt")))
# filter unwanted files
found_req_files = [n for n in found_req_files if n not in SKIP_REQ_FILES]
found_req_names = [os.path.splitext(req)[0].replace("datatype_", "") for req in found_req_files]
# define basic and extra extras
extras_req = {
name: _load_req(file_name=fname) for name, fname in zip(found_req_names, found_req_files) if "_" not in name
}
extras_req.update(
{
name: extras_req[name.split("_")[0]] + _load_req(file_name=fname)
for name, fname in zip(found_req_names, found_req_files)
if "_" in name
}
)
# some extra combinations
extras_req["vision"] = _expand_reqs(extras_req, ["image", "video"])
extras_req["all"] = _expand_reqs(extras_req, ["vision", "tabular", "text", "audio"])
extras_req["dev"] = _expand_reqs(extras_req, ["all", "test", "docs"])
# filter the uniques
extras_req = {n: list(set(req)) for n, req in extras_req.items()}
# https://packaging.python.org/discussions/install-requires-vs-requirements /
# keep the meta-data here for simplicity in reading this file... it's not obvious
# what happens and to non-engineers they won't know to look in init ...
# the goal of the project is simplicity for researchers, don't want to add too much
# engineer specific practices
setup(
name="lightning-flash",
version=about.__version__,
description=about.__docs__,
author=about.__author__,
author_email=about.__author_email__,
url=about.__homepage__,
download_url="https://github.com/PyTorchLightning/lightning-flash",
license=about.__license__,
packages=find_packages(exclude=["tests", "tests.*"]),
long_description=long_description,
long_description_content_type="text/markdown",
include_package_data=True,
extras_require=extras_req,
entry_points={
"console_scripts": ["flash=flash.__main__:main"],
},
zip_safe=False,
keywords=["deep learning", "pytorch", "AI"],
python_requires=">=3.6",
install_requires=base_req,
project_urls={
"Bug Tracker": "https://github.com/PyTorchLightning/lightning-flash/issues",
"Documentation": "https://lightning-flash.rtfd.io/en/latest/",
"Source Code": "https://github.com/PyTorchLightning/lightning-flash",
},
classifiers=[
"Environment :: Console",
"Natural Language :: English",
# How mature is this project? Common values are
# 3 - Alpha, 4 - Beta, 5 - Production/Stable
"Development Status :: 4 - Beta",
# Indicate who your project is intended for
"Intended Audience :: Developers",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Image Recognition",
"Topic :: Scientific/Engineering :: Information Analysis",
# Pick your license as you wish
# 'License :: OSI Approved :: BSD License',
"Operating System :: OS Independent",
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
],
)