-
Notifications
You must be signed in to change notification settings - Fork 2
/
06d_plot_prediction_curves.R
163 lines (134 loc) · 5.81 KB
/
06d_plot_prediction_curves.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Notes -------------------------------------------------------------------
# Illustrate predictions
# Since we don't retrain the model everyday, it may be more accurate to present the model as an animation...
# 101 = patient 5
# 111 = patient 3
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace (better to restart the session)
source(here::here("analysis", "00_init.R"))
library(gganimate)
#### OPTIONS
score <- "SCORAD"
dataset <- "PFDC"
t_horizon <- 4 # horizon that was used for forward chaining
mdl_name <- "EczemaPred"
patient_id <- 16
####
score <- match.arg(score, c("SCORAD", "oSCORAD"))
dataset <- match.arg(dataset, c("Derexyl", "PFDC"))
mdl_name <- match.arg(mdl_name, c("EczemaPred", "Smoothing", "RW", "AR1", "MixedAR1"))
max_score <- detail_POSCORAD(score)$Maximum
res_file <- get_results_files(outcome = score,
model = mdl_name,
dataset = dataset,
val_horizon = t_horizon,
root_dir = here())$Val
stopifnot(file.exists(res_file))
# Processing --------------------------------------------------------------
res <- readRDS(res_file)
df <- load_dataset(dataset) %>%
rename(Time = Day) %>%
mutate(Iteration = get_fc_iteration(Time, t_horizon))
pt <- unique(df[["Patient"]])
pred <- res %>%
filter(Patient == patient_id) %>%
select(Patient, Time, Horizon, Samples)
obs <- df %>%
filter(Patient == patient_id) %>%
select(all_of(c("Patient", "Time", "Date", "Iteration", score))) %>%
rename(Score = all_of(score))
tmp <- full_join(obs, pred, by = c("Patient", "Time"))
ssi <- lapply(1:nrow(tmp),
function(i) {
tryCatch({
x <- tmp$Samples[i][[1]]
HuraultMisc::extract_distribution(x, parName = "", type = "hdi") %>%
mutate(Time = tmp$Time[i] - tmp$Horizon[i],
PredTime = tmp$Time[i]) %>%
select(-Index, -Variable)
},
error = function(e) {
NULL
})
}) %>%
bind_rows()
lvl <- sort(unique(ssi[["Level"]]), decreasing = TRUE)
updating_days <- data.frame(Time = 1:max(tmp[["Time"]])) %>%
mutate(Iteration = get_fc_iteration(Time, t_horizon)) %>%
group_by(Iteration) %>%
summarise(LastTime = max(Time)) %>%
filter(Iteration < max(Iteration)) %>%
pull(LastTime)
# Plot --------------------------------------------------------------------
p <- ggplot()
# Prediction intervals (cf. fill cannot be an aesthetic with a ribbon)
for (i in 1:length(lvl)) {
p <- p + geom_ribbon(data = subset(ssi, Level == lvl[i]),
aes(x = PredTime, ymin = Lower, ymax = Upper, fill = Level))
}
# Actual trajectory
p <- p +
geom_path(data = tmp, aes(x = Time, y = Score)) +
geom_point(data = tmp, aes(x = Time, y = Score, group = seq_along(Time)))
# Format
p <- p +
scale_fill_gradientn(colours = rev(c("#FFFFFF", RColorBrewer::brewer.pal(n = 6, "Blues")))[-1],
limits = c(0, 1), breaks = c(.1, .5, .9)) +
scale_y_continuous(limits = c(0, max_score), expand = c(0, 0)) +
scale_x_continuous(limits = c(0, NA), expand = expansion(mult = c(0, .05))) +
labs(x = "Day", y = score, fill = "Confidence level") +
theme_classic(base_size = 15) +
theme(legend.position = "top")
# Static image
ps <- p +
geom_vline(xintercept = updating_days + .5, linetype = "dashed", colour = "grey")
ps
if (FALSE) {
saveRDS(ps, here("results", paste0(score, "_prediction", t_horizon, "_", dataset, "_", patient_id, ".rds")))
ggsave(here("results", paste0(score, "_prediction", t_horizon, "_", dataset, "_", patient_id, ".jpg")),
width = 13, height = 8, units = "cm", dpi = 300, scale = 2)
}
# Animation
if (FALSE) {
p <- p + transition_reveal(Time)
p
anim_save(here("results", paste0(score, "_prediction", t_horizon, "_", dataset, "_", patient_id, ".gif")))
}
# Combine plots -----------------------------------------------------------
if (FALSE) {
# Derexyl
# - 51 (cf. pid=53 as example data, cf. absent signs, correlation, stable, good prediction)
# - 138 (cf. 142, less table but prediction still OK-ish)
# PFDC
# - 5 (cf. pid=8 as example data, more dynamic, especially subjective symptoms)
# - 16 (cf. pid=20); or potentially 13 (cf. pid=17)
pl_Derexyl <- list(readRDS(here("results/SCORAD_prediction4_Derexyl_51.rds")),
readRDS(here("results/SCORAD_prediction4_Derexyl_138.rds")))
pl_PFDC <- list(readRDS(here("results/SCORAD_prediction4_PFDC_5.rds")),
readRDS(here("results/SCORAD_prediction4_PFDC_16.rds")))
plot_grid(
plot_grid(pl_Derexyl[[1]] +
labs(title = "Dataset 1") +
theme(legend.position = "none",
plot.title = element_text(face = "bold")),
pl_Derexyl[[2]] +
theme(legend.position = "none"),
ncol = 1, labels = c("A", "")),
plot_grid(pl_PFDC[[1]] +
labs(title = "Dataset 2") +
theme(legend.position = "none",
plot.title = element_text(face = "bold")),
pl_PFDC[[2]] +
theme(legend.position = "none"),
ncol = 1, labels = c("B", "")),
get_legend(pl_Derexyl[[1]] + labs(fill = "Confidence\nlevel") + theme(legend.position = "right")),
nrow = 1, rel_widths = c(.45, .45, .1)
)
# ggsave(here("results", "prediction_curves.jpg"), width = 13, height = 8, units = "cm", dpi = 300, scale = 2.5)
# Corresponding trajectories for example data
plot_grid(plot_POSCORAD("Derexyl", 53),
plot_POSCORAD("PFDC", 8),
nrow = 1,
labels = "AUTO")
# ggsave(here("results", "data_example.jpg"), width = 13, height = 10, units = "cm", dpi = 300, scale = 3)
}