-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsolver-HQP-eiquadprog.cpp
226 lines (190 loc) · 6.92 KB
/
solver-HQP-eiquadprog.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include "solver-HQP-eiquadprog.h"
#include <iostream>
#include "eiquadprog_2011.h"
using namespace HQP::constraint;
using namespace HQP::solver;
using namespace Eigen;
using namespace std;
#define max_level 5
#define q_tol 0.0001
SolverHQuadProg::SolverHQuadProg(const std::string & name) :
SolverHQPBase(name),
m_hessian_regularization(DEFAULT_HESSIAN_REGULARIZATION)
{
for (int i = 0; i < max_level; i++) {
m_n[i] = dof;
m_neq[i] = 0;
m_nin[i] = 0;
m_nbound[i] = 0;
m_change[i] = false;
}
}
void SolverHQuadProg::sendMsg(const std::string & s)
{
std::cout << "[SolverHQuadProg." << m_name << "] " << s << std::endl;
}
void SolverHQuadProg::resize(unsigned int n, unsigned int neq, unsigned int nin)
{
}
void SolverHQuadProg::resize_level(unsigned int level) {
assert(level > 0);
unsigned int neq = 0, nin = 0, n_variable = m_n[0];
for (unsigned int i = 0; i <= level; i++) {
neq += m_neq[i];
nin += m_nin[i] + m_nbound[i];
}
m_slack = m_neq[level] + m_nin[level];
n_variable += m_neq[level] + m_nin[level];
m_CE[level].resize(neq, n_variable);
m_CE[level].setZero();
m_ce0[level].resize(neq);
m_ce0[level].setZero();
m_CI[level].resize(nin * 2 + m_slack * 2, n_variable);
m_CI[level].setZero();
m_ci0[level].resize(nin * 2 + m_slack * 2);
m_ci0[level].setZero();
m_H[level].resize(n_variable, n_variable);
m_H[level].setIdentity();
m_H[level].topLeftCorner(m_n[0], m_n[0]) *= q_tol;// q_tol*MatrixXd(m_nbound[0], m_nbound[0]).setIdentity();
m_g[level].resize(n_variable);
m_g[level].setZero();
x_sol[level].resize(n_variable);
x_sol[level].setZero();
}
void SolverHQuadProg::resize(unsigned int n, unsigned int neq, unsigned int nin, unsigned int nbound) {
}
const HQPOutput & SolverHQuadProg::solve(const HQPData & problemData)
{
VectorXi active_index(max_level);
active_index.setZero();
int level_num = 0;
for (int i = 0; i < max_level; i++) {
unsigned int neq = 0, nin = 0, nbound = 0;
const ConstraintLevel & cl = problemData[i];
if (cl.size() > 0) {
active_index(i) = 1;
const unsigned int n = cl[0].second->cols(); // dof
for (ConstraintLevel::const_iterator it = cl.begin(); it != cl.end(); it++)
{
const ConstraintBase* constr = it->second;
assert(n == constr->cols());
if (constr->isEquality())
neq += constr->rows();
else if (constr->isInequality())
nin += constr->rows();
else if (constr->isBound())
nbound = constr->lowerBound().size();
if (i == 0)
assert(neq == 0 && nin == 0); // The first Hierachical level must only joint limit!
}
if (m_neq[level_num] == neq && m_nin[level_num] == nin && m_nbound[level_num] == nbound)
m_change[level_num] = false;
else
m_change[level_num] = true; // constraint change!
m_neq[level_num] = neq;
m_nin[level_num] = nin;
m_nbound[level_num] = nbound;
level_num++;
}
}
for (int i = 0; i < max_level; i++)
x_sol[i].setZero();
unsigned int c_level = 1;
for (int i = 0; i < max_level; i++) {
if (m_change[c_level]) {
resize_level(c_level);
}
resize_level(c_level);
int i_eq = 0, i_in = 0, i_bound = 0, cc_level = 0;
int c_eq = 0, c_in = 0;
if (c_level == level_num)
break;
while (cc_level <= c_level) {
if (active_index(cc_level) == 1) {
//cout << "m_H" << m_H[c_level].transpose() << endl;
//cout << "m_g" << m_g[c_level].transpose() << endl;
//cout << "m_CI" << m_CI[c_level] << endl;
//cout << "m_ci0" << m_ci0[c_level].transpose() << endl;
//cout << "m_CE" << m_CE[c_level] << endl;
//cout << "m_ce0" << m_ce0[c_level].transpose() << endl;
//getchar();
const ConstraintLevel & cl = problemData[cc_level];
for (ConstraintLevel::const_iterator it = cl.begin(); it != cl.end(); it++)
{
c_eq = 0; c_in = 0;
const ConstraintBase* constr = it->second;
if (constr->isEquality())
{
m_CE[c_level].block(i_eq, 0, constr->rows(), constr->cols()) = constr->matrix();
m_ce0[c_level].segment(i_eq, constr->rows()) = -constr->vector();
i_eq += constr->rows();
c_eq = constr->rows();
}
else if (constr->isInequality())
{
m_CI[c_level].block(i_in, 0, constr->rows(), constr->cols()) = -1.0 * constr->matrix();
m_ci0[c_level].segment(i_in, constr->rows()) = constr->upperBound();
i_in += constr->rows();
m_CI[c_level].block(i_in, 0, constr->rows(), constr->cols()) = constr->matrix();
m_ci0[c_level].segment(i_in, constr->rows()) = -1.0 * constr->lowerBound();
i_in += constr->rows();
c_in = constr->rows() * 2;
}
else if (constr->isBound())
{
m_CI[c_level].block(i_in, 0, constr->rows(), constr->rows()) = -MatrixXd::Identity(m_n[0], m_n[0]);
m_ci0[c_level].segment(i_in, constr->rows()) = constr->upperBound();
i_in += constr->rows();
m_CI[c_level].block(i_in, 0, constr->rows(), constr->rows()) = MatrixXd::Identity(m_n[0], m_n[0]);
m_ci0[c_level].segment(i_in, constr->rows()) = -1.0 * constr->lowerBound();
i_in += constr->rows();
c_in = constr->rows() * 2;
}
if (c_level >= 2 && cc_level == 2) {
m_ce0[c_level].segment(0, 6) += x_sol[c_level - 1].segment(7, 6);
// 이전 테스크의 eq 갯수를 받아와서 넣어줘야 함,..
//m_ci0[c_level].segment(0, c_in) += x_sol[c_level - 1].segment(7, c_in);
} //fix me
}
cc_level++;
}
} // while
// slack variable for lb and ub
m_CI[c_level].block(m_CI[c_level].rows() - m_slack * 2, m_CI[c_level].cols() - m_slack, m_slack, m_slack) = -1.0 * MatrixXd::Identity(m_slack, m_slack);
m_CI[c_level].bottomRightCorner(m_slack, m_slack) = 1.0 * MatrixXd::Identity(m_slack, m_slack);
m_ci0[c_level].tail(m_slack * 2) = 1000.0 * VectorXd(m_slack * 2).setOnes();
m_ci0[c_level].tail(m_slack) = 1000.0 * VectorXd(m_slack).setOnes();
// slack matrix for A
m_CE[c_level].bottomRightCorner(m_slack, m_slack) = MatrixXd(m_slack, m_slack).setIdentity();
//cout << "c" << c_eq + c_in << endl;
// min 0.5 * x G x + g0 x
// s.t.
// CE^T x + ce0 = 0
// CI^T x + ci0 >= 0
m_objValue[c_level] = solve_quadprog(m_H[c_level], m_g[c_level], m_CE[c_level].transpose(), m_ce0[c_level], m_CI[c_level].transpose(), m_ci0[c_level], x_sol[c_level], m_activeSet[c_level], m_activeSetSize[c_level]);
if (m_objValue[c_level] == std::numeric_limits<double>::infinity()) {
m_output.status = HQP_STATUS_INFEASIBLE;
/* cout << "m_H" << m_H[c_level].transpose() << endl;
cout << "m_g" << m_g[c_level].transpose() << endl;
cout << "m_CI" << m_CI[c_level] << endl;
cout << "m_ci0" << m_ci0[c_level].transpose() << endl;
cout << "m_CE" << m_CE[c_level] << endl;
cout << "m_ce0" << m_ce0[c_level].transpose() << endl;
getchar();*/
}
else
{
m_output.status = HQP_STATUS_OPTIMAL;
}
c_level++;
}
m_output.x = x_sol[c_level - 1];
return m_output;
}
double SolverHQuadProg::getObjectiveValue()
{
return 0; // m_objValue[c_level];
}
double SolverHQuadProg::getObjectiveValue2(unsigned int level) {
return m_objValue[level];
}