-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathFourier_transforms.c
337 lines (273 loc) · 7.44 KB
/
Fourier_transforms.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
Copyright (C) 1995 The GeoFramework Consortium
This file is part of Ellipsis3D.
Ellipsis3D is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
Ellipsis3D is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Author:
Louis Moresi <[email protected]>
*/
#include "config.h"
#include <math.h>
#if HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include "element_definitions.h"
#include "global_defs.h"
/*
* "complex.h", Pjotr '87.
*/
typedef struct {
double re, im;
} COMPLEX;
#define c_re(c) ((c).re)
#define c_im(c) ((c).im)
/*
* C_add_mul adds product of c1 and c2 to c.
*/
#define c_add_mul(c, c1, c2) { COMPLEX C1, C2; C1 = (c1); C2 = (c2); \
c_re (c) += C1.re * C2.re - C1.im * C2.im; \
c_im (c) += C1.re * C2.im + C1.im * C2.re; }
/*
* C_conj substitutes c by its complex conjugate.
*/
#define c_conj(c) { c_im (c) = -c_im (c); }
/*
* C_realdiv divides complex c by real.
*/
#define c_realdiv(c, real) { c_re (c) /= (real); c_im (c) /= (real); }
COMPLEX *W_factors = 0; /* array of W-factors */
unsigned Nfactors = 0; /* number of entries in W-factors */
#define W(n, k) (W_factors [((k) * (Nfactors / (n))) % Nfactors])
/*
* "fourier.c", Pjotr '87.
*/
/*
* Recursive (reverse) complex fast Fourier transform on the n
* complex samples of array in, with the Cooley-Tukey method.
* The result is placed in out. The number of samples, n, is arbitrary.
* The algorithm costs O (n * (r1 + .. + rk)), where k is the number
* of factors in the prime-decomposition of n (also the maximum
* depth of the recursion), and ri is the i-th primefactor.
*/
static unsigned radix ();
static void split(),join();
void Fourier (
COMPLEX *in,
unsigned n,
COMPLEX *out
)
{
unsigned r;
if ((r = radix (n)) < n)
split (in, r, n / r, out);
join (in, n / r, n, out);
}
/*
* Give smallest possible radix for n samples.
* Determines (in a rude way) the smallest primefactor of n.
*/
static unsigned radix (
unsigned n
)
{
unsigned r;
if (n < 2)
return 1;
for (r = 2; r < n; r++)
if (n % r == 0)
break;
return r;
}
/*
* Split array in of r * m samples in r parts of each m samples,
* such that in [i] goes to out [(i % r) * m + (i / r)].
* Then call for each part of out Fourier, so the r recursively
* transformed parts will go back to in.
*/
static void split (
COMPLEX *in,
register unsigned r,
register unsigned m,
COMPLEX *out
)
{
register unsigned k, s, i, j;
for (k = 0, j = 0; k < r; k++)
for (s = 0, i = k; s < m; s++, i += r, j++)
out [j] = in [i];
for (k = 0; k < r; k++, out += m, in += m)
Fourier (out, m, in);
}
/*
* Sum the n / m parts of each m samples of in to n samples in out.
* r - 1
* Out [j] becomes sum in [j % m] * W (j * k). Here in is the k-th
* k = 0 k n k
* part of in (indices k * m ... (k + 1) * m - 1), and r is the radix.
* For k = 0, a complex multiplication with W (0) is avoided.
*/
static void join (
COMPLEX *in,
register unsigned m,
register unsigned n,
COMPLEX *out
)
{
register unsigned i, j, jk, s;
for (s = 0; s < m; s++)
for (j = s; j < n; j += m) {
out [j] = in [s];
for (i = s + m, jk = j; i < n; i += m, jk += j)
c_add_mul (out [j], in [i], W (n, jk));
}
}
/*
* Forward Fast Fourier Transform on the n samples of complex array in.
* The result is placed in out. The number of samples, n, is arbitrary.
* The W-factors are calculated in advance.
*/
int fft (
COMPLEX *in,
unsigned n,
COMPLEX *out
)
{
unsigned i;
for (i = 0; i < n; i++)
c_conj (in [i]);
if (W_init (n) == -1)
return -1;
Fourier (in, n, out);
for (i = 0; i < n; i++) {
c_conj (out [i]);
c_realdiv (out [i], n);
}
return 0;
}
/*
* Reverse Fast Fourier Transform on the n complex samples of array in.
* The result is placed in out. The number of samples, n, is arbitrary.
* The W-factors are calculated in advance.
*/
rft (
COMPLEX *in,
unsigned n,
COMPLEX *out
)
{
if (W_init (n) == -1)
return -1;
Fourier (in, n, out);
return 0;
}
/*
* W_init puts Wn ^ k (= e ^ (2pi * i * k / n)) in W_factors [k], 0 <= k < n.
* If n is equal to Nfactors then nothing is done, so the same W_factors
* array can used for several transforms of the same number of samples.
* Notice the explicit calculation of sines and cosines, an iterative approach
* introduces substantial errors.
*/
int W_init (
unsigned n
)
{
/* char *malloc ();*/
# define pi 3.1415926535897932384626434
unsigned k;
if (n == Nfactors)
return 0;
if (Nfactors != 0 && W_factors != 0)
free ((char *) W_factors);
if ((Nfactors = n) == 0)
return 0;
if ((W_factors = (COMPLEX *) malloc (n * sizeof (COMPLEX))) == 0)
return -1;
for (k = 0; k < n; k++) {
c_re (W_factors [k]) = cos (2 * pi * k / n);
c_im (W_factors [k]) = sin (2 * pi * k / n);
}
return 0;
}
/* WOW, you can get into some interesting difficulties when you download code
from other people. Luckily, in this case there is a helpful set of comments
to describe what's going on: */
/*
* Reele forward fast fourier transform van n samples van in naar
* amplitudes van out.
* De cosinus komponent van de dc komt in out [0], dan volgen in
* out [2 * i - 1] en out [2 * i] steeds resp. de cosinus en sinus
* komponenten van de i-de harmonische. Bij een even aantal samples
* bevat out [n - 1] de cosinus komponent van de Nyquist frequentie.
* Extraatje: Na afloop is in onaangetast.
*/
void realfft (
double *in,
unsigned n,
double *out
)
{
COMPLEX *c_in, *c_out;
unsigned i;
if (n == 0 ||
(c_in = (COMPLEX *) malloc (n * sizeof (COMPLEX))) == 0 ||
(c_out = (COMPLEX *) malloc (n * sizeof (COMPLEX))) == 0)
return;
for (i = 0; i < n; i++) {
c_re (c_in [i]) = in [i];
c_im (c_in [i]) = 0;
}
fft (c_in, n, c_out);
out [0] = c_re (c_out [0]); /* cos van dc */
for (i = 1; i < (n + 1) / 2; i++) { /* cos/sin i-de harmonische */
out [2 * i - 1] = c_re (c_out [i]) * 2;
out [2 * i] = c_im (c_out [i]) * -2;
}
if (n % 2 == 0) /* cos van Nyquist */
out [n - 1] = c_re (c_out [n / 2]);
free ((char *) c_in);
free ((char *) c_out);
}
/*
* Reele reverse fast fourier transform van amplitudes van in naar
* n samples van out.
* De cosinus komponent van de dc staat in in [0], dan volgen in
* in [2 * i - 1] en in [2 * i] steeds resp. de cosinus en sinus
* komponenten van de i-de harmonische. Bij een even aantal samples
* bevat in [n - 1] de cosinus komponent van de Nyquist frequentie.
* Extraatje: Na afloop is in onaangetast.
*/
void realrft (
double *in,
unsigned n,
double *out
)
{
COMPLEX *c_in, *c_out;
unsigned i;
if (n == 0 ||
(c_in = (COMPLEX *) malloc (n * sizeof (COMPLEX))) == 0 ||
(c_out = (COMPLEX *) malloc (n * sizeof (COMPLEX))) == 0)
return;
c_re (c_in [0]) = in [0]; /* dc */
c_im (c_in [0]) = 0;
for (i = 1; i < (n + 1) / 2; i++) { /* geconj. symm. harmonischen */
c_re (c_in [i]) = in [2 * i - 1] / 2;
c_im (c_in [i]) = in [2 * i] / -2;
c_re (c_in [n - i]) = in [2 * i - 1] / 2;
c_im (c_in [n - i]) = in [2 * i] / 2;
}
if (n % 2 == 0) { /* Nyquist */
c_re (c_in [n / 2]) = in [n - 1];
c_im (c_in [n / 2]) = 0;
}
rft (c_in, n, c_out);
for (i = 0; i < n; i++)
out [i] = c_re (c_out [i]);
free ((char *) c_in);
free ((char *) c_out);
}