forked from G-Wang/WaveRNN-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathpreprocess.py
107 lines (87 loc) · 3.3 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
Preprocess dataset
usage:
preprocess.py [options] <wav-dir>...
options:
--output-dir=<dir> Directory where processed outputs are saved. [default: data_dir].
-h, --help Show help message.
"""
import os
from docopt import docopt
import numpy as np
import math, pickle, os
from audio import *
from hparams import hparams as hp
from utils import *
from tqdm import tqdm
def get_wav_mel(path):
"""Given path to .wav file, get the quantized wav and mel spectrogram as numpy vectors
"""
wav = load_wav(path)
mel = melspectrogram(wav)
if hp.input_type == 'raw' or hp.input_type=='mixture':
return wav.astype(np.float32), mel
elif hp.input_type == 'mulaw':
quant = mulaw_quantize(wav, hp.mulaw_quantize_channels)
return quant.astype(np.int), mel
elif hp.input_type == 'bits':
quant = quantize(wav)
return quant.astype(np.int), mel
else:
raise ValueError("hp.input_type {} not recognized".format(hp.input_type))
def process_data(wav_dirs, output_path, mel_path, wav_path):
"""
given wav directory and output directory, process wav files and save quantized wav and mel
spectrogram to output directory
"""
dataset_ids = []
# get list of wav files
wav_files=[]
for wav_dir in wav_dirs:
thisdir = os.listdir(wav_dir)
thisdir=[ os.path.join(wav_dir, thisfile) for thisfile in thisdir]
wav_files += thisdir
# check wav_file
assert len(wav_files) != 0 or wav_files[0][-4:] == '.wav', "no wav files found!"
# create training and testing splits
test_wav_files = wav_files[:4]
wav_files = wav_files[4:]
for i, wav_file in enumerate(tqdm(wav_files)):
# get the file id
file_id = '{:d}'.format(i).zfill(5)
wav, mel = get_wav_mel(os.path.join(wav_dir,wav_file))
# save
np.save(os.path.join(mel_path,file_id+".npy"), mel)
np.save(os.path.join(wav_path,file_id+".npy"), wav)
# add to dataset_ids
dataset_ids.append(file_id)
# save dataset_ids
with open(os.path.join(output_path,'dataset_ids.pkl'), 'wb') as f:
pickle.dump(dataset_ids, f)
# process testing_wavs
test_path = os.path.join(output_path,'test')
os.makedirs(test_path, exist_ok=True)
for i, wav_file in enumerate(test_wav_files):
wav, mel = get_wav_mel(os.path.join(wav_dir,wav_file))
# save test_wavs
np.save(os.path.join(test_path,"test_{}_mel.npy".format(i)),mel)
np.save(os.path.join(test_path,"test_{}_wav.npy".format(i)),wav)
print("\npreprocessing done, total processed wav files:{}.\nProcessed files are located in:{}".format(len(wav_files), os.path.abspath(output_path)))
if __name__=="__main__":
args = docopt(__doc__)
wav_dir = args["<wav-dir>"]
output_dir = args["--output-dir"]
# create paths
output_path = os.path.join(output_dir,"")
mel_path = os.path.join(output_dir,"mel")
wav_path = os.path.join(output_dir,"wav")
# create dirs
os.makedirs(output_path, exist_ok=True)
os.makedirs(mel_path, exist_ok=True)
os.makedirs(wav_path, exist_ok=True)
# process data
process_data(wav_dir, output_path, mel_path, wav_path)
def test_get_wav_mel():
wav, mel = get_wav_mel('sample.wav')
print(wav.shape, mel.shape)
print(wav)