forked from G-Wang/WaveRNN-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathlrschedule.py
46 lines (33 loc) · 1.33 KB
/
lrschedule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# reference: https://raw.githubusercontent.com/r9y9/wavenet_vocoder/master/lrschedule.py
import numpy as np
# https://github.com/tensorflow/tensor2tensor/issues/280#issuecomment-339110329
def noam_learning_rate_decay(init_lr, global_step, warmup_steps=4000):
# Noam scheme from tensor2tensor:
warmup_steps = float(warmup_steps)
step = global_step + 1.
lr = init_lr * warmup_steps**0.5 * np.minimum(
step * warmup_steps**-1.5, step**-0.5)
return lr
def step_learning_rate_decay(init_lr, global_step,
anneal_rate=0.98,
anneal_interval=30000):
return init_lr * anneal_rate ** (global_step // anneal_interval)
def cyclic_cosine_annealing(init_lr, global_step, T, M):
"""Cyclic cosine annealing
https://arxiv.org/pdf/1704.00109.pdf
Args:
init_lr (float): Initial learning rate
global_step (int): Current iteration number
T (int): Total iteration number (i,e. nepoch)
M (int): Number of ensembles we want
Returns:
float: Annealed learning rate
"""
TdivM = T // M
return init_lr / 2.0 * (np.cos(np.pi * ((global_step - 1) % TdivM) / TdivM) + 1.0)
def test_noam():
lr = 1e-3
init_lr = 1e-3
for i in range(50000):
print(i, lr)
lr = noam_learning_rate_decay(init_lr, i)