-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path89.k-sum.py
89 lines (81 loc) · 1.9 KB
/
89.k-sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Tag: Backpack DP, Dynamic Programming/DP
# Time: O(NKT)
# Space: O(NKT)
# Ref: -
# Note: -
# Given `n` distinct positive integers, integer `k` $(k \leq n)$ and a number `target`.
#
# Find `k` numbers where sum is target.
# Calculate how many solutions there are?
#
# **Example 1:**
#
# Input:
# ```
# A = [1,2,3,4]
# k = 2
# target = 5
# ```
# Output:
# ```
# 2
# ```
# Explanation:
#
# 1 + 4 = 2 + 3 = 5
# **Example 2:**
#
# Input:
# ```
# A = [1,2,3,4,5]
# k = 3
# target = 6
# ```
# Output:
# ```
# 1
# ```
# Explanation:
#
# There is only one method. 1 + 2 + 3 = 6
#
#
from typing import (
List,
)
class Solution:
"""
@param a: An integer array
@param k: A positive integer (k <= length(A))
@param target: An integer
@return: An integer
"""
def k_sum(self, a: List[int], k: int, target: int) -> int:
# write your code here
n = len(a)
dp = [[[0] * (target + 1) for j in range(k + 1)] for i in range(n + 1)]
dp[0][0][0] = 1
for i in range(1, n + 1):
for j in range(k + 1):
for t in range(target + 1):
dp[i][j][t] = dp[i - 1][j][t]
if j - 1 >= 0 and a[i - 1] <= t:
dp[i][j][t] += dp[i - 1][j - 1][t - a[i - 1]]
return dp[n][k][target]
class Solution:
"""
@param a: An integer array
@param k: A positive integer (k <= length(A))
@param target: An integer
@return: An integer
"""
def k_sum(self, a: List[int], k: int, target: int) -> int:
# write your code here
n = len(a)
dp = [[0] * (target + 1) for j in range(k + 1)]
dp[0][0] = 1
for num in a:
for j in range(k, 0, -1):
for t in range(target, num - 1, -1):
dp[j][t] += dp[j - 1][t - num]
return dp[k][target]