-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path674.longest-continuous-increasing-subsequence.cpp
83 lines (74 loc) · 2.02 KB
/
674.longest-continuous-increasing-subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// Tag: Array
// Time: O(N)
// Space: O(1)
// Ref: -
// Note: -
// Given an unsorted array of integers nums, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing.
// A continuous increasing subsequence is defined by two indices l and r (l < r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l <= i < r, nums[i] < nums[i + 1].
//
// Example 1:
//
// Input: nums = [1,3,5,4,7]
// Output: 3
// Explanation: The longest continuous increasing subsequence is [1,3,5] with length 3.
// Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element
// 4.
//
// Example 2:
//
// Input: nums = [2,2,2,2,2]
// Output: 1
// Explanation: The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly
// increasing.
//
//
// Constraints:
//
// 1 <= nums.length <= 104
// -109 <= nums[i] <= 109
//
//
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n , 1);
for (int i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
}
return *max_element(dp.begin(), dp.end());
}
};
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int n = nums.size();
int cur = 1;
int res = 1;
for (int i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) {
cur += 1;
} else {
cur = 1;
}
res = max(res, cur);
}
return res;
}
};
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
int res = 1;
int i = 0;
for (auto j = 1; j < nums.size(); ++j) {
if (nums[j] <= nums[j - 1]) {
i = j;
}
res = max(res, j - i + 1);
}
return res;
}
};