-
Notifications
You must be signed in to change notification settings - Fork 333
/
train_battle.py
234 lines (192 loc) · 7.77 KB
/
train_battle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
Train battle, two models in two processes
"""
import argparse
import time
import logging as log
import math
import numpy as np
import magent
leftID, rightID = 0, 1
def generate_map(env, map_size, handles):
""" generate a map, which consists of two squares of agents"""
width = height = map_size
init_num = map_size * map_size * 0.04
gap = 3
global leftID, rightID
leftID, rightID = rightID, leftID
# left
n = init_num
side = int(math.sqrt(n)) * 2
pos = []
for x in range(width//2 - gap - side, width//2 - gap - side + side, 2):
for y in range((height - side)//2, (height - side)//2 + side, 2):
pos.append([x, y, 0])
env.add_agents(handles[leftID], method="custom", pos=pos)
# right
n = init_num
side = int(math.sqrt(n)) * 2
pos = []
for x in range(width//2 + gap, width//2 + gap + side, 2):
for y in range((height - side)//2, (height - side)//2 + side, 2):
pos.append([x, y, 0])
env.add_agents(handles[rightID], method="custom", pos=pos)
def play_a_round(env, map_size, handles, models, print_every, train=True, render=False, eps=None):
"""play a ground and train"""
env.reset()
generate_map(env, map_size, handles)
step_ct = 0
done = False
n = len(handles)
obs = [[] for _ in range(n)]
ids = [[] for _ in range(n)]
acts = [[] for _ in range(n)]
nums = [env.get_num(handle) for handle in handles]
total_reward = [0 for _ in range(n)]
print("===== sample =====")
print("eps %.2f number %s" % (eps, nums))
start_time = time.time()
while not done:
# take actions for every model
for i in range(n):
obs[i] = env.get_observation(handles[i])
ids[i] = env.get_agent_id(handles[i])
# let models infer action in parallel (non-blocking)
models[i].infer_action(obs[i], ids[i], 'e_greedy', eps, block=False)
for i in range(n):
acts[i] = models[i].fetch_action() # fetch actions (blocking)
env.set_action(handles[i], acts[i])
# simulate one step
done = env.step()
# sample
step_reward = []
for i in range(n):
rewards = env.get_reward(handles[i])
if train:
alives = env.get_alive(handles[i])
# store samples in replay buffer (non-blocking)
models[i].sample_step(rewards, alives, block=False)
s = sum(rewards)
step_reward.append(s)
total_reward[i] += s
# render
if render:
env.render()
# stat info
nums = [env.get_num(handle) for handle in handles]
# clear dead agents
env.clear_dead()
# check return message of previous called non-blocking function sample_step()
if args.train:
for model in models:
model.check_done()
if step_ct % print_every == 0:
print("step %3d, nums: %s reward: %s, total_reward: %s " %
(step_ct, nums, np.around(step_reward, 2), np.around(total_reward, 2)))
step_ct += 1
if step_ct > 550:
break
sample_time = time.time() - start_time
print("steps: %d, total time: %.2f, step average %.2f" % (step_ct, sample_time, sample_time / step_ct))
# train
total_loss, value = [0 for _ in range(n)], [0 for _ in range(n)]
if train:
print("===== train =====")
start_time = time.time()
# train models in parallel
for i in range(n):
models[i].train(print_every=1000, block=False)
for i in range(n):
total_loss[i], value[i] = models[i].fetch_train()
train_time = time.time() - start_time
print("train_time %.2f" % train_time)
def round_list(l): return [round(x, 2) for x in l]
return round_list(total_loss), nums, round_list(total_reward), round_list(value)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--save_every", type=int, default=5)
parser.add_argument("--render_every", type=int, default=10)
parser.add_argument("--n_round", type=int, default=2000)
parser.add_argument("--render", action="store_true")
parser.add_argument("--load_from", type=int)
parser.add_argument("--train", action="store_true")
parser.add_argument("--map_size", type=int, default=125)
parser.add_argument("--greedy", action="store_true")
parser.add_argument("--name", type=str, default="battle")
parser.add_argument("--eval", action="store_true")
parser.add_argument('--alg', default='dqn', choices=['dqn', 'drqn', 'a2c'])
args = parser.parse_args()
# set logger
magent.utility.init_logger(args.name)
# init the game
env = magent.GridWorld("battle", map_size=args.map_size)
env.set_render_dir("build/render")
# two groups of agents
handles = env.get_handles()
# sample eval observation set
eval_obs = [None, None]
if args.eval:
print("sample eval set...")
env.reset()
generate_map(env, args.map_size, handles)
for i in range(len(handles)):
eval_obs[i] = magent.utility.sample_observation(env, handles, 2048, 500)
# load models
batch_size = 256
unroll_step = 8
target_update = 1200
train_freq = 5
if args.alg == 'dqn':
from magent.builtin.tf_model import DeepQNetwork
RLModel = DeepQNetwork
base_args = {'batch_size': batch_size,
'memory_size': 2 ** 20, 'learning_rate': 1e-4,
'target_update': target_update, 'train_freq': train_freq}
elif args.alg == 'drqn':
from magent.builtin.tf_model import DeepRecurrentQNetwork
RLModel = DeepRecurrentQNetwork
base_args = {'batch_size': batch_size / unroll_step, 'unroll_step': unroll_step,
'memory_size': 8 * 625, 'learning_rate': 1e-4,
'target_update': target_update, 'train_freq': train_freq}
elif args.alg == 'a2c':
# see train_against.py to know how to use a2c
raise NotImplementedError
# init models
names = [args.name + "-l", args.name + "-r"]
models = []
for i in range(len(names)):
model_args = {'eval_obs': eval_obs[i]}
model_args.update(base_args)
models.append(magent.ProcessingModel(env, handles[i], names[i], 20000+i, 1000, RLModel, **model_args))
# load if
savedir = 'save_model'
if args.load_from is not None:
start_from = args.load_from
print("load ... %d" % start_from)
for model in models:
model.load(savedir, start_from)
else:
start_from = 0
# print state info
print(args)
print("view_space", env.get_view_space(handles[0]))
print("feature_space", env.get_feature_space(handles[0]))
# play
start = time.time()
for k in range(start_from, start_from + args.n_round):
tic = time.time()
eps = magent.utility.piecewise_decay(k, [0, 700, 1400], [1, 0.2, 0.05]) if not args.greedy else 0
loss, num, reward, value = play_a_round(env, args.map_size, handles, models,
train=args.train, print_every=50,
render=args.render or (k+1) % args.render_every == 0,
eps=eps) # for e-greedy
log.info("round %d\t loss: %s\t num: %s\t reward: %s\t value: %s" % (k, loss, num, reward, value))
print("round time %.2f total time %.2f\n" % (time.time() - tic, time.time() - start))
# save models
if (k + 1) % args.save_every == 0 and args.train:
print("save model... ")
for model in models:
model.save(savedir, k)
# send quit command
for model in models:
model.quit()