-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDomStudioLineaments.m
527 lines (439 loc) · 23.1 KB
/
DomStudioLineaments.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
function DomStudioLineaments(~)
% @ 2023 by Andrea Bistacchi, distributed under the GNU AGPL v3.0 license.
%
% Function used for the analysis of lineaments imported as SHP files
%
% Last update 2023/04/19
% _____________
% 0- initialize
clear all
close all
clc
set(0,'DefaultFigureWindowStyle','docked')
rad = pi/180;
deg = 180/pi;
% ______________
% 1 - input data
% load SHP with lineament data as a Geographic Data Structure
% (https://www.mathworks.com/help/map/geographic-data-structures.html)
[file, path] = uigetfile('*.shp');
filename = [path file];
[path,file,~] = fileparts(filename);
inDataStuct = shaperead(filename);
disp(['File ' file '.shp read.'])
disp(' ')
% input dip/direction of mean fracture plane
disp('Input mean attitude of fracture set.')
meanDip = -1;
while meanDip<=0
meanDip = input('Mean DIP of fracture set [90]: ');
if isempty(meanDip), meanDip = 90; end
end
meanDir = -1;
while meanDir<=0
meanDir = input('Mean DIRECTION of fracture set [90]: ');
if isempty(meanDir), meanDir = 90; end
end
disp(' ');
% outcrop size (just used for visualization)
outcropHeight = -1;
while outcropHeight<=0
outcropHeight = input('Outcrop height along dip [10]: ');
if isempty(outcropHeight), outcropHeight = 10; end
end
outcropLength = -1;
while outcropLength<=0
outcropLength = input('Outcrop length along strike [10]: ');
if isempty(outcropLength), outcropLength = 19; end
end
disp(' ');
% ________________________________________________________________________
% 1 - calculate mean plunge/trend and xyz components of normal unit vector
meanP = 90 - meanDip;
meanT = meanDir+180 -360*(meanDir+180>360);
meanNormal = [sin(meanT*rad)*cos(meanP*rad)...
cos(meanT*rad)*cos(meanP*rad)...
sin(meanP*rad)];
% ___________________________________
% 2 - extract and clean polyline data
% Ndata = number of data points
Nlines = size(inDataStuct);
% create cell array for polylines, removing NaNs and other invalid values
lines = {};
for i = 1:Nlines
lines{i} = [inDataStuct(i).X(isfinite(inDataStuct(i).X))' inDataStuct(i).Y(isfinite(inDataStuct(i).X))' zeros(size(find(isfinite(inDataStuct(i).X))))'];
end
% _______________________________________________________________
% 3 - calculate centroids, outcrop center, and shift to re-center
% calculate centroids
centroids = [];
for i = 1:Nlines
centroids(i,:) = mean(lines{i});
end
% center of dataset from mean of facet centers - all following processing
% will assume this point as origin of the reference frame
outcropCenter = mean(centroids);
% translate lines in order to have outcropCenter = [0 0 0]
for i = 1:Nlines
lines{i} = lines{i} - outcropCenter;
end
% re-calculate centroids
centroids = [];
for i = 1:Nlines
centroids(i,:) = mean(lines{i});
end
% re-calculate outcrop center to check
outcropCenter = mean(centroids);
% _____________________________________
% 4 - interpolare average outcrop plane
% interpolate average outcrop plane with pincipal components
[coeff,~,~] = pca(centroids);
outcropNormal = coeff(:,3)';
% plunge/trend of outcrop plane
outcropP = asin(-outcropNormal(3))*deg;
outcropT = atan2(outcropNormal(1),outcropNormal(2))*deg;
outcropT = outcropT+(outcropT<0)*360;
outcropP = outcropP*(outcropP>=0)-outcropP*(outcropP<0);
outcropT = outcropT-(outcropP<0)*180;
outcropT = outcropT+(outcropT<0)*360;
outcropT = outcropT-(outcropT>360)*360;
disp(['outcropP = ' num2str(outcropP)]);
disp(['outcropT = ' num2str(outcropT)]);
% dip/dip azimuth of outcrop plane
outcropDip = 90-outcropP;
outcropDipAzimuth = outcropT+180;
outcropDipAzimuth = outcropDipAzimuth+(outcropDipAzimuth<0)*360;
outcropDipAzimuth = outcropDipAzimuth-(outcropDipAzimuth>360)*360;
disp(['outcropDip = ' num2str(outcropDip)]);
disp(['outcropDipAzimuth = ' num2str(outcropDipAzimuth)]);
% outcrop strike
outcropStrike = (outcropDipAzimuth<90).*(outcropDipAzimuth+270) + (outcropDipAzimuth>=90).*(outcropDipAzimuth-90);
disp(['outcropStrike = ' num2str(outcropStrike)]);
% ______________________________
% 5 - calculate projection plane
% intersection (unit vector) of mean fracture plane and outcrop plane
facetOutcropIntersection = cross(meanNormal,outcropNormal);
facetOutcropIntersectionMod = sqrt(facetOutcropIntersection(1)^2+facetOutcropIntersection(2)^2+facetOutcropIntersection(3)^2);
facetOutcropIntersection = facetOutcropIntersection/facetOutcropIntersectionMod;
% plunge/trend of intersection
intersectionPlaneP = asin(-facetOutcropIntersection(3))*deg;
intersectionPlaneT = atan2(facetOutcropIntersection(1),facetOutcropIntersection(2))*deg;
intersectionPlaneT = intersectionPlaneT+(intersectionPlaneT<0)*360;
intersectionPlaneP = intersectionPlaneP*(intersectionPlaneP>=0)-intersectionPlaneP*(intersectionPlaneP<0);
intersectionPlaneT = intersectionPlaneT-(intersectionPlaneP<0)*180;
intersectionPlaneT = intersectionPlaneT+(intersectionPlaneT<0)*360;
intersectionPlaneT = intersectionPlaneT-(intersectionPlaneT>360)*360;
disp(['intersectionPlaneP = ' num2str(intersectionPlaneP)]);
disp(['intersectionPlaneT = ' num2str(intersectionPlaneT)]);
% normal to mean normal and intersection
projectionPlaneNormal = cross(facetOutcropIntersection,meanNormal);
projectionPlaneNormalMod = sqrt(projectionPlaneNormal(1)^2+projectionPlaneNormal(2)^2+projectionPlaneNormal(3)^2);
projectionPlaneNormal = projectionPlaneNormal/projectionPlaneNormalMod;
% plunge/trend of projection plane
projectionPlaneP = asin(-projectionPlaneNormal(3))*deg;
projectionPlaneT = atan2(projectionPlaneNormal(1),projectionPlaneNormal(2))*deg;
projectionPlaneT = projectionPlaneT+(projectionPlaneT<0)*360;
projectionPlaneP = projectionPlaneP*(projectionPlaneP>=0)-projectionPlaneP*(projectionPlaneP<0);
projectionPlaneT = projectionPlaneT-(projectionPlaneP<0)*180;
projectionPlaneT = projectionPlaneT+(projectionPlaneT<0)*360;
projectionPlaneT = projectionPlaneT-(projectionPlaneT>360)*360;
disp(['projectionPlaneP = ' num2str(projectionPlaneP)]);
disp(['projectionPlaneT = ' num2str(projectionPlaneT)]);
% dip/dip azimuth of projection plane
projectionPlaneDip = 90-projectionPlaneP;
projectionPlaneDipAzimuth = projectionPlaneT+180;
projectionPlaneDipAzimuth = projectionPlaneDipAzimuth+(projectionPlaneDipAzimuth<0)*360;
projectionPlaneDipAzimuth = projectionPlaneDipAzimuth-(projectionPlaneDipAzimuth>360)*360;
disp(['projectionPlaneDip = ' num2str(projectionPlaneDip)]);
disp(['projectionPlaneDipAzimuth = ' num2str(projectionPlaneDipAzimuth)]);
% projection plane strike
projectionPlaneStrike = (projectionPlaneDipAzimuth<90).*(projectionPlaneDipAzimuth+270) + (projectionPlaneDipAzimuth>=90).*(projectionPlaneDipAzimuth-90);
disp(['projectionPlaneStrike = ' num2str(projectionPlaneStrike)]);
% _______________________________________________
% 6 - rectangular frame for average outcrop plane
% downdip vector with length = 1/2 Height
halfOutcropPlaneDip(1) = cos(outcropDip*rad)*sin(outcropDipAzimuth*rad)*outcropHeight/2;
halfOutcropPlaneDip(2) = cos(outcropDip*rad)*cos(outcropDipAzimuth*rad)*outcropHeight/2;
halfOutcropPlaneDip(3) = sin(outcropDip*rad)*outcropHeight/2; % in the facets version there was a "-" in front of this
% alongstrike vector with length = 1/2 Length
halfOutcropPlaneStrike(1) = sin(outcropStrike*rad)*outcropLength/2;
halfOutcropPlaneStrike(2) = cos(outcropStrike*rad)*outcropLength/2;
halfOutcropPlaneStrike(3) = 0;
% four corners of outcrop best fit plane, which is centerd in [0 0 0] = translated outcropCenter
outcropCorner1 = - halfOutcropPlaneStrike - halfOutcropPlaneDip;
outcropCorner2 = - halfOutcropPlaneStrike + halfOutcropPlaneDip;
outcropCorner3 = + halfOutcropPlaneStrike + halfOutcropPlaneDip;
outcropCorner4 = + halfOutcropPlaneStrike - halfOutcropPlaneDip;
% __________________________________________
% 7 - rectangular frame for projection plane
% downdip vector with length = 1/2 Height
halfProjectionPlaneDip(1) = cos(projectionPlaneDip*rad)*sin(projectionPlaneDipAzimuth*rad)*outcropHeight/2; % uses outcrop height
halfProjectionPlaneDip(2) = cos(projectionPlaneDip*rad)*cos(projectionPlaneDipAzimuth*rad)*outcropHeight/2;
halfProjectionPlaneDip(3) = sin(projectionPlaneDip*rad)*outcropHeight/2; % in the facets version there was a "-" in front of this
% alongstrike vector with length = 1/2 Length
halfProjectionPlaneStrike(1) = sin(projectionPlaneStrike*rad)*outcropLength/2; % uses outcrop length
halfProjectionPlaneStrike(2) = cos(projectionPlaneStrike*rad)*outcropLength/2;
halfProjectionPlaneStrike(3) = 0;
% four corners of outcrop best fit plane, which is centerd in outcropCenter
projectionPlaneCorner1 = - halfProjectionPlaneStrike - halfProjectionPlaneDip;
projectionPlaneCorner2 = - halfProjectionPlaneStrike + halfProjectionPlaneDip;
projectionPlaneCorner3 = + halfProjectionPlaneStrike + halfProjectionPlaneDip;
projectionPlaneCorner4 = + halfProjectionPlaneStrike - halfProjectionPlaneDip;
% _____________________________________________
% 8 - project lines onto projection plane in 3D
lines_prj_3D = {};
for i = 1:Nlines
Nnodes = size(lines{i},1);
lines_prj_3D{i} = zeros(size(lines{i}));
for j = 1:Nnodes
lines_prj_3D{i}(j,:) = lines{i}(j,:) + (-lines{i}(j,:) * projectionPlaneNormal') * projectionPlaneNormal;
end
end
% ___________
% 9 - 3D plot
% initialize figure 1
figure(1); hold on; axis equal; grid on
title({'3D view of projected fracture facets - mean normal in cyan, outcrop in magenta,';...
'projection plane in green, intersection of outcrop and mean facet plane in red'})
xlabel('East'); ylabel('North'); zlabel('Z');
% plot input lines and centroids
for i = 1:Nlines
plot3(lines{i}(:,1), lines{i}(:,2), lines{i}(:,3));
plot3(centroids(:,1), centroids(:,2), centroids(:,3), 'd', MarkerSize=3);
end
% plot projected lines
for i = 1:Nlines
plot3(lines_prj_3D{i}(:,1), lines_prj_3D{i}(:,2), lines_prj_3D{i}(:,3));
end
% plot normal unit vectors scaled by outcrop length
quiver3(0,0,0,meanNormal(1)*outcropLength/3,meanNormal(2)*outcropLength/3,meanNormal(3)*outcropLength/3,'LineWidth',2,'Color','cyan');
quiver3(0,0,0,outcropNormal(1)*outcropLength/3,outcropNormal(2)*outcropLength/3,outcropNormal(3)*outcropLength/3,'LineWidth',2,'Color','magenta');
quiver3(0,0,0,projectionPlaneNormal(1)*outcropLength/3,projectionPlaneNormal(2)*outcropLength/3,projectionPlaneNormal(3)*outcropLength/3,'LineWidth',2,'Color','green');
quiver3(0,0,0,facetOutcropIntersection(1)*outcropLength/3,facetOutcropIntersection(2)*outcropLength/3,facetOutcropIntersection(3)*outcropLength/3,'LineWidth',2,'Color','red');
% plot frame for average outcrop plane
plot3([outcropCorner1(1) outcropCorner2(1) outcropCorner3(1) outcropCorner4(1) outcropCorner1(1)]',...
[outcropCorner1(2) outcropCorner2(2) outcropCorner3(2) outcropCorner4(2) outcropCorner1(2)]',...
[outcropCorner1(3) outcropCorner2(3) outcropCorner3(3) outcropCorner4(3) outcropCorner1(3)]',...
'LineWidth',2,'Color','magenta');
% plot frame for projection plane
plot3([projectionPlaneCorner1(1) projectionPlaneCorner2(1) projectionPlaneCorner3(1) projectionPlaneCorner4(1) projectionPlaneCorner1(1)]',...
[projectionPlaneCorner1(2) projectionPlaneCorner2(2) projectionPlaneCorner3(2) projectionPlaneCorner4(2) projectionPlaneCorner1(2)]',...
[projectionPlaneCorner1(3) projectionPlaneCorner2(3) projectionPlaneCorner3(3) projectionPlaneCorner4(3) projectionPlaneCorner1(3)]',...
'LineWidth',2,'Color','green');
% _____________________________
% 10 - projected lines 3D -> 2D
lines_prj_2D = {};
% U coorddinate along scanline unit vector
% V coordinate along intersection unit vector
for i = 1:Nlines
Nnodes = size(lines{i},1);
lines_prj_2D{i} = zeros(size(lines{i},1), 2);
for j = 1:Nnodes
lines_prj_2D{i}(j,1) = dot(lines_prj_3D{i}(j,:),meanNormal);
lines_prj_2D{i}(j,2) = dot(lines_prj_3D{i}(j,:),facetOutcropIntersection);
end
end
% _______________________________
% 10 - plot projected lines in 2D
figure(2); hold on; axis equal; grid on
%set(gca,'XDir','reverse'); set(gca,'YDir','reverse')
title('2D view of projected fracture facets')
xlabel('mean normal axis (U)'); ylabel('outcrop - mean facet intersection (V)');
for i = 1:Nlines
plot(lines_prj_2D{i}(:,1), lines_prj_2D{i}(:,2),'LineWidth',2);
end
% _________________________________________________________________________
% 11 - input number of scanlines and find intersections for each facet trace
% input number of scanlines
disp(' ');
Nscan = -1;
while Nscan<=0
Nscan = input('input number of scanlines [100]: ');
if isempty(Nscan), Nscan = 100; end
Nscan = round(Nscan);
end
disp(' ');
% __________________
% 12 - scanline area
% scanline max and min U are given by dataset max and min U plus some tolerance
maxUs = zeros(Nlines);
minUs = zeros(Nlines);
maxVs = zeros(Nlines);
minVs = zeros(Nlines);
for i = 1:Nlines
maxUs(i) = max(lines_prj_2D{i}(:,1));
minUs(i) = min(lines_prj_2D{i}(:,1));
maxVs(i) = max(lines_prj_2D{i}(:,2));
minVs(i) = min(lines_prj_2D{i}(:,2));
end
maxU = max(maxUs);
minU = min(minUs);
maxV = max(maxVs);
minV = min(minVs);
scanMaxU = maxU + outcropLength*0.005;
scanMinU = minU - outcropLength*0.005;
scanMaxV = maxV - outcropHeight*0.005;
scanMinV = minV + outcropHeight*0.005;
% scanline step along V is given dividing maxV - minV minus some tolerance by number of scanlines - 1
scanStep = (scanMaxV - scanMinV)/(Nscan-1);
% _____________________________
% 14 - intersection and spacing
intersectionCount = zeros(1,Nscan);
spacing = [];
for i = 1:Nscan
scanV = scanMinV + scanStep*(i-1);
plot([scanMaxU scanMinU],[scanV scanV],'Color',[0.5 0.5 0.5]);
recordedIntersection = [];
for j = 1:Nlines
[intersectionU,intersectionV] = polyxpoly(lines_prj_2D{j}(:,1), lines_prj_2D{j}(:,2), [scanMaxU scanMinU], [scanV scanV]);
if isfinite(intersectionU)
plot(intersectionU,intersectionV,'k.');
intersectionU = intersectionU';
% intersectionV = intersectionV'; % this is used just for plotting
intersectionCount(i) = intersectionCount(i)+length(intersectionU);
recordedIntersection = [recordedIntersection intersectionU];
end
end
if intersectionCount(i)>1
disp(['Scanline ' num2str(i) ' - ' num2str(intersectionCount(i)) ' intersections']);
recordedIntersection = sort(recordedIntersection);
thisScanSpacing = recordedIntersection(2:end) - recordedIntersection(1:end-1);
%disp(num2str(thisScanSpacing));
spacing = [spacing thisScanSpacing];
end
end
spacingPrctile = prctile(spacing,0:5:100);
spacingMean = mean(spacing);
spacingMode = mode(spacing);
spacingStDev = std(spacing);
% ___________________________________
% 15 - fit distributions and K-S test
% fit distributions
LognormDist = fitdist(spacing','Lognormal');
NormDist = fitdist(spacing','Normal');
ExpDist = fitdist(spacing','Exponential');
BurrDist = fitdist(spacing','Burr');
GammaDist = fitdist(spacing','Gamma');
LogisticDist = fitdist(spacing','Logistic');
% K-S tests
[LognormKSHo,LognormKSPval,LognormKSKstat] = kstest(spacing', LognormDist);
[NormKSHo,NormKSPval,NormKSKstat] = kstest(spacing', NormDist);
[ExpKSHo,ExpKSPval,ExpKSKstat] = kstest(spacing', ExpDist);
[BurrKSHo,BurrKSPval,BurrKSKstat] = kstest(spacing', BurrDist);
[GammaKSHo,GammaKSPval,GammaKSKstat] = kstest(spacing', GammaDist);
[LogisticKSHo,LogisticKSPval,LogisticKSKstat] = kstest(spacing', LogisticDist);
% K-S test text
%Lognorm
Lognorm_txt1 =['K-S test for LogNormal spacing distribution with μ = ' num2str(LognormDist.mu) ' - σ = ' num2str(LognormDist.sigma)];
Lognorm_txt2 = ['K statistics = ' num2str(LognormKSKstat)];
Lognorm_txt3 = ['p-value = ' num2str(LognormKSPval)];
Lognorm_txt4 = ['Ho = ' num2str(LognormKSHo)];
if LognormKSHo == 0
Lognorm_txt5 = ['No evidence against Ho of no difference with LogNormal distr. -> Ho retained -> a LogNormal length distribution is detected at 5% significance'];
else
Lognorm_txt5 = ['Strong evidence against Ho of no difference with LogNormal distr. -> Ho rejected -> no LogNormal length distribution is detected at 5% significance'];
end
%Norm
Norm_txt1 =['K-S test for Normal length distribution with Mean = ' num2str(NormDist.mu) ' - St. dev = ' num2str(NormDist.sigma)];
Norm_txt2 = ['K statistics = ' num2str(NormKSKstat)];
Norm_txt3 = ['p-value = ' num2str(NormKSPval)];
Norm_txt4 = ['Ho = ' num2str(NormKSHo)];
if NormKSHo == 0
Norm_txt5 = ['No evidence against Ho of no difference with Normal distr. -> Ho retained -> a Normal length distribution is detected at 5% significance'];
else
Norm_txt5 = ['Strong evidence against Ho of no difference with Normal distr. -> Ho rejected -> no Normal length distribution is detected at 5% significance'];
end
%Exponential
Exp_txt1 =['K-S test for Normal length distribution with Mean = ' num2str(ExpDist.mu)];
Exp_txt2 = ['K statistics = ' num2str(ExpKSKstat)];
Exp_txt3 = ['p-value = ' num2str(ExpKSPval)];
Exp_txt4 = ['Ho = ' num2str(ExpKSHo)];
if ExpKSHo == 0
Exp_txt5 = ['No evidence against Ho of no difference with Exponential distr. -> Ho retained -> a Exponential length distribution is detected at 5% significance'];
else
Exp_txt5 = ['Strong evidence against Ho of no difference with Exponential distr. -> Ho rejected -> no Exponential length distribution is detected at 5% significance'];
end
%Burr
Burr_txt1 =['K-S test for Burr length distribution with c = ' num2str(BurrDist.c) ' - k = ' num2str(BurrDist.k) '- alpha =' num2str(BurrDist.alpha)];
Burr_txt2 = ['K statistics = ' num2str(BurrKSKstat)];
Burr_txt3 = ['p-value = ' num2str(BurrKSPval)];
Burr_txt4 = ['Ho = ' num2str(BurrKSHo)];
if BurrKSHo == 0
Burr_txt5 = ['No evidence against Ho of no difference with Burr distr. -> Ho retained -> a Burr length distribution is detected at 5% significance'];
else
Burr_txt5 = ['Strong evidence against Ho of no difference with Burr distr. -> Ho rejected -> no Burr length distribution is detected at 5% significance'];
end
%Gamma
Gamma_txt1 =['K-S test for Gamma length distribution with a = ' num2str(GammaDist.a) ' - b = ' num2str(GammaDist.b)];
Gamma_txt2 = ['K statistics = ' num2str(GammaKSKstat)];
Gamma_txt3 = ['p-value = ' num2str(GammaKSPval)];
Gamma_txt4 = ['Ho = ' num2str(GammaKSHo)];
if GammaKSHo == 0
Gamma_txt5 = ['No evidence against Ho of no difference with Gamma distr. -> Ho retained -> a Gamma length distribution is detected at 5% significance'];
else
Gamma_txt5 = ['Strong evidence against Ho of no difference with Gamma distr. -> Ho rejected -> no Gamma length distribution is detected at 5% significance'];
end
%Logistic
Logistic_txt1 =['K-S test for Logistic length distribution with μ = ' num2str(LogisticDist.mu) ' - σ = ' num2str(LogisticDist.sigma)];
Logistic_txt2 = ['K statistics = ' num2str(LogisticKSKstat)];
Logistic_txt3 = ['p-value = ' num2str(LogisticKSPval)];
Logistic_txt4 = ['Ho = ' num2str(LogisticKSHo)];
if LogisticKSHo == 0
Logistic_txt5 = ['No evidence against Ho of no difference with Logistic distr. -> Ho retained -> a Logistic length distribution is detected at 5% significance'];
else
Logistic_txt5 = ['Strong evidence against Ho of no difference with Logistic distr. -> Ho rejected -> no Logistic length distribution is detected at 5% significance'];
end
% show K-S test text
disp(char(Lognorm_txt1,Lognorm_txt2,Lognorm_txt3,Lognorm_txt4,Lognorm_txt5))
disp(char(Norm_txt1,Norm_txt2,Norm_txt3,Norm_txt4,Norm_txt5))
disp(char(Exp_txt1,Exp_txt2,Exp_txt3,Exp_txt4,Exp_txt5))
disp(char(Burr_txt1,Burr_txt2,Burr_txt3,Burr_txt4,Burr_txt5))
disp(char(Gamma_txt1,Gamma_txt2,Gamma_txt3,Gamma_txt4,Gamma_txt5))
disp(char(Logistic_txt1,Logistic_txt2,Logistic_txt3,Logistic_txt4,Logistic_txt5))
% _______________
% 15b - plot stats
figure(3); hold on; grid on
%histogram(spacing,'BinWidth',1,'Normalization','pdf');
histogram(spacing,'Normalization','pdf');
plot(linspace(min(spacing),max(spacing),20), pdf(LognormDist,linspace(min(spacing),max(spacing),20)),'r',LineWidth=2)
plot(linspace(min(spacing),max(spacing),20), pdf(NormDist,linspace(min(spacing),max(spacing),20)),'g',LineWidth=2)
plot(linspace(min(spacing),max(spacing),20), pdf(ExpDist,linspace(min(spacing),max(spacing),20)),'b',LineWidth=2)
plot(linspace(min(spacing),max(spacing),20), pdf(BurrDist,linspace(min(spacing),max(spacing),20)),'c',LineWidth=2)
plot(linspace(min(spacing),max(spacing),20), pdf(GammaDist,linspace(min(spacing),max(spacing),20)),'m',LineWidth=2)
plot(linspace(min(spacing),max(spacing),20), pdf(LogisticDist,linspace(min(spacing),max(spacing),20)),'y',LineWidth=2)
% xlim([0 14])
box on
legend('Spacing data','Lognormal','Normal','exponential','Burr','Gamma','Logistic','Location','NE');
xlabel('Spacing'); ylabel('Density');
title({['Spacing histogram from ' num2str(Nscan) ' scanlines'],...
['Mean = ' num2str(spacingMean) ' Mode = ' num2str(spacingMode) ' St Dev = ' num2str(spacingStDev)],...
['Percentiles:'],...
[' 0% = ' num2str(spacingPrctile(1),3) ' 5% = ' num2str(spacingPrctile(2),3) ' 10% = ' num2str(spacingPrctile(3),3) ' 15% = ' num2str(spacingPrctile(4),3) ' 20% = ' num2str(spacingPrctile(5),3)],...
[' 25% = ' num2str(spacingPrctile(6),3) ' 30% = ' num2str(spacingPrctile(7),3) ' 35% = ' num2str(spacingPrctile(8),3) ' 40% = ' num2str(spacingPrctile(9),3) ' 45% = ' num2str(spacingPrctile(10),3)],...
[' 50% = ' num2str(spacingPrctile(11),3) ' 55% = ' num2str(spacingPrctile(12),3) ' 60% = ' num2str(spacingPrctile(13),3) ' 65% = ' num2str(spacingPrctile(14),3) ' 70% = ' num2str(spacingPrctile(15),3)],...
[' 75% = ' num2str(spacingPrctile(16),3) ' 80% = ' num2str(spacingPrctile(17),3) ' 85% = ' num2str(spacingPrctile(18),3) ' 90% = ' num2str(spacingPrctile(19),3) ' 95% = ' num2str(spacingPrctile(20),3)],...
['100% = ' num2str(spacingPrctile(21),3) ]});
figure(4); hold on; grid on
%histogram(spacing,'BinWidth',1,'Normalization','cdf');
histogram(spacing,'Normalization','cdf');
plot(linspace(min(spacing),max(spacing),20), cdf(LognormDist,linspace(min(spacing),max(spacing),20)),'r',LineWidth=2)
xlabel('Spacing'); ylabel('Cumulative Frequency');
title({['Cumulative frequency from ' num2str(Nscan) ' scanlines'],...
['Mean = ' num2str(spacingMean) ' Mode = ' num2str(spacingMode) ' St Dev = ' num2str(spacingStDev)],...
['Percentiles:'],...
[' 0% = ' num2str(spacingPrctile(1),3) ' 5% = ' num2str(spacingPrctile(2),3) ' 10% = ' num2str(spacingPrctile(3),3) ' 15% = ' num2str(spacingPrctile(4),3) ' 20% = ' num2str(spacingPrctile(5),3)],...
[' 25% = ' num2str(spacingPrctile(6),3) ' 30% = ' num2str(spacingPrctile(7),3) ' 35% = ' num2str(spacingPrctile(8),3) ' 40% = ' num2str(spacingPrctile(9),3) ' 45% = ' num2str(spacingPrctile(10),3)],...
[' 50% = ' num2str(spacingPrctile(11),3) ' 55% = ' num2str(spacingPrctile(12),3) ' 60% = ' num2str(spacingPrctile(13),3) ' 65% = ' num2str(spacingPrctile(14),3) ' 70% = ' num2str(spacingPrctile(15),3)],...
[' 75% = ' num2str(spacingPrctile(16),3) ' 80% = ' num2str(spacingPrctile(17),3) ' 85% = ' num2str(spacingPrctile(18),3) ' 90% = ' num2str(spacingPrctile(19),3) ' 95% = ' num2str(spacingPrctile(20),3)],...
['100% = ' num2str(spacingPrctile(21),3) ]});
% _______________________________
% 16 - save figures for reporting
for i=1:4
figure(i);
%savefig([path '\' file '_fig_' num2str(i) '.fig']);
saveas(gcf,[path '\' file '_fig_' num2str(i) '.jpg'])
end
% save spacing
spacing = spacing';
save([path '\' file '_spacing.txt'],'spacing','-ascii');
disp('Files saved');