-
Notifications
You must be signed in to change notification settings - Fork 69
/
BlazeposeDepthaiEdge.py
546 lines (470 loc) · 25.2 KB
/
BlazeposeDepthaiEdge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import numpy as np
import cv2
from numpy.core.fromnumeric import trace
import mediapipe_utils as mpu
from pathlib import Path
from FPS import FPS, now
import depthai as dai
import marshal
import sys
from string import Template
from math import sin, cos
SCRIPT_DIR = Path(__file__).resolve().parent
POSE_DETECTION_MODEL = str(SCRIPT_DIR / "models/pose_detection_sh4.blob")
LANDMARK_MODEL_FULL = str(SCRIPT_DIR / "models/pose_landmark_full_sh4.blob")
LANDMARK_MODEL_HEAVY = str(SCRIPT_DIR / "models/pose_landmark_heavy_sh4.blob")
LANDMARK_MODEL_LITE = str(SCRIPT_DIR / "models/pose_landmark_lite_sh4.blob")
DETECTION_POSTPROCESSING_MODEL = str(SCRIPT_DIR / "custom_models/DetectionBestCandidate_sh1.blob")
DIVIDE_BY_255_MODEL = str(SCRIPT_DIR / "custom_models/DivideBy255_sh1.blob")
TEMPLATE_MANAGER_SCRIPT = str(SCRIPT_DIR / "template_manager_script.py")
def to_planar(arr: np.ndarray, shape: tuple) -> np.ndarray:
return cv2.resize(arr, shape).transpose(2,0,1).flatten()
class BlazeposeDepthai:
"""
Blazepose body pose detector
Arguments:
- input_src: frame source,
- "rgb" or None: OAK* internal color camera,
- "rgb_laconic": same as "rgb" but without sending the frames to the host,
Note that as we are in Edge mode, input sources coming from the host like a image or a video is not supported
- pd_model: Blazepose detection model blob file (if None, takes the default value POSE_DETECTION_MODEL),
- pd_score: confidence score to determine whether a detection is reliable (a float between 0 and 1).
- pp_model: detection postprocessing model blob file (if None, takes the default value DETECTION_POSTPROCESSING_MODEL),,
- lm_model: Blazepose landmark model blob file
- None or "full": the default blob file LANDMARK_MODEL_FULL,
- "lite": the default blob file LANDMARK_MODEL_LITE,
- "831": the full model from previous version of mediapipe (0.8.3.1) LANDMARK_MODEL_FULL_0831,
- a path of a blob file.
- lm_score_thresh : confidence score to determine whether landmarks prediction is reliable (a float between 0 and 1).
- xyz: boolean, when True get the (x, y, z) coords of the reference point (center of the hips) (if the device supports depth measures).
- crop : boolean which indicates if square cropping is done or not
- smoothing: boolean which indicates if smoothing filtering is applied
- filter_window_size and filter_velocity_scale:
The filter keeps track (on a window of specified size) of
value changes over time, which as result gives velocity of how value
changes over time. With higher velocity it weights new values higher.
- higher filter_window_size adds to lag and to stability
- lower filter_velocity_scale adds to lag and to stability
- internal_fps : when using the internal color camera as input source, set its FPS to this value (calling setFps()).
- internal_frame_height : when using the internal color camera, set the frame height (calling setIspScale()).
The width is calculated accordingly to height and depends on value of 'crop'
- stats : boolean, when True, display some statistics when exiting.
- trace: boolean, when True print some debug messages
- force_detection: boolean, force person detection on every frame (never use landmarks from previous frame to determine ROI)
"""
def __init__(self, input_src="rgb",
pd_model=None,
pd_score_thresh=0.5,
pp_model=None,
lm_model=None,
lm_score_thresh=0.7,
xyz = False,
crop=False,
smoothing= True,
filter_window_size=5,
filter_velocity_scale=10,
stats=False,
internal_fps=None,
internal_frame_height=1080,
trace=False,
force_detection=False):
self.pd_model = pd_model if pd_model else POSE_DETECTION_MODEL
self.pp_model = pp_model if pd_model else DETECTION_POSTPROCESSING_MODEL
self.divide_by_255_model = DIVIDE_BY_255_MODEL
print(f"Pose detection blob file : {self.pd_model}")
self.rect_transf_scale = 1.25
if lm_model is None or lm_model == "full":
self.lm_model = LANDMARK_MODEL_FULL
elif lm_model == "lite":
self.lm_model = LANDMARK_MODEL_LITE
elif lm_model == "heavy":
self.lm_model = LANDMARK_MODEL_HEAVY
else:
self.lm_model = lm_model
print(f"Landmarks using blob file : {self.lm_model}")
self.pd_score_thresh = pd_score_thresh
self.lm_score_thresh = lm_score_thresh
self.smoothing = smoothing
self.crop = crop
self.internal_fps = internal_fps
self.stats = stats
self.presence_threshold = 0.5
self.visibility_threshold = 0.5
self.trace = trace
self.force_detection = force_detection
self.device = dai.Device()
self.xyz = False
if input_src == None or input_src == "rgb" or input_src == "rgb_laconic":
self.input_type = "rgb" # OAK* internal color camera
self.laconic = input_src == "rgb_laconic" # Camera frames are not sent to the host
if xyz:
# Check if the device supports stereo
cameras = self.device.getConnectedCameras()
if dai.CameraBoardSocket.LEFT in cameras and dai.CameraBoardSocket.RIGHT in cameras:
self.xyz = True
else:
print("Warning: depth unavailable on this device, 'xyz' argument is ignored")
if internal_fps is None:
if "full" in str(self.lm_model):
self.internal_fps = 18 if self.xyz else 20
elif "heavy" in str(lm_model):
self.internal_fps = 7 if self.xyz else 8
else: # "lite"
self.internal_fps = 22 if self.xyz else 26
else:
self.internal_fps = internal_fps
print(f"Internal camera FPS set to: {self.internal_fps}")
self.video_fps = self.internal_fps # Used when saving the output in a video file. Should be close to the real fps
if self.crop:
self.frame_size, self.scale_nd = mpu.find_isp_scale_params(internal_frame_height)
self.img_h = self.img_w = self.frame_size
self.pad_w = self.pad_h = 0
self.crop_w = (int(round(1920 * self.scale_nd[0] / self.scale_nd[1])) - self.img_w) // 2
else:
width, self.scale_nd = mpu.find_isp_scale_params(internal_frame_height * 1920 / 1080, is_height=False)
self.img_h = int(round(1080 * self.scale_nd[0] / self.scale_nd[1]))
self.img_w = int(round(1920 * self.scale_nd[0] / self.scale_nd[1]))
self.pad_h = (self.img_w - self.img_h) // 2
self.pad_w = 0
self.frame_size = self.img_w
self.crop_w = 0
print(f"Internal camera image size: {self.img_w} x {self.img_h} - pad_h: {self.pad_h}")
else:
print("Invalid input source:", input_src)
sys.exit()
self.nb_kps = 33
if self.smoothing:
self.filter_landmarks = mpu.LandmarksSmoothingFilter(
frequency=self.video_fps,
min_cutoff=0.05,
beta=80,
derivate_cutoff=1
)
# landmarks_aux corresponds to the 2 landmarks used to compute the ROI in next frame
self.filter_landmarks_aux = mpu.LandmarksSmoothingFilter(
frequency=self.video_fps,
min_cutoff=0.01,
beta=10,
derivate_cutoff=1
)
self.filter_landmarks_world = mpu.LandmarksSmoothingFilter(
frequency=self.video_fps,
min_cutoff=0.1,
beta=40,
derivate_cutoff=1,
disable_value_scaling=True
)
if self.xyz:
self.filter_xyz = mpu.LowPassFilter(alpha=0.25)
# Define and start pipeline
usb_speed = self.device.getUsbSpeed()
self.device.startPipeline(self.create_pipeline())
print(f"Pipeline started - USB speed: {str(usb_speed).split('.')[-1]}")
# Define data queues
if not self.laconic:
self.q_video = self.device.getOutputQueue(name="cam_out", maxSize=1, blocking=False)
self.q_manager_out = self.device.getOutputQueue(name="manager_out", maxSize=1, blocking=False)
# For debugging
# self.q_pre_pd_manip_out = self.device.getOutputQueue(name="pre_pd_manip_out", maxSize=1, blocking=False)
# self.q_pre_lm_manip_out = self.device.getOutputQueue(name="pre_lm_manip_out", maxSize=1, blocking=False)
self.fps = FPS()
self.nb_pd_inferences = 0
self.nb_lm_inferences = 0
self.nb_lm_inferences_after_landmarks_ROI = 0
self.nb_frames_no_body = 0
def create_pipeline(self):
print("Creating pipeline...")
# Start defining a pipeline
pipeline = dai.Pipeline()
pipeline.setOpenVINOVersion(dai.OpenVINO.Version.VERSION_2021_4)
self.pd_input_length = 224
self.lm_input_length = 256
# ColorCamera
print("Creating Color Camera...")
cam = pipeline.create(dai.node.ColorCamera)
cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
cam.setInterleaved(False)
cam.setIspScale(self.scale_nd[0], self.scale_nd[1])
cam.setFps(self.internal_fps)
cam.setBoardSocket(dai.CameraBoardSocket.RGB)
if self.crop:
cam.setVideoSize(self.frame_size, self.frame_size)
cam.setPreviewSize(self.frame_size, self.frame_size)
else:
cam.setVideoSize(self.img_w, self.img_h)
cam.setPreviewSize(self.img_w, self.img_h)
if not self.laconic:
cam_out = pipeline.create(dai.node.XLinkOut)
cam_out.setStreamName("cam_out")
cam_out.input.setQueueSize(1)
cam_out.input.setBlocking(False)
cam.video.link(cam_out.input)
# Define manager script node
manager_script = pipeline.create(dai.node.Script)
manager_script.setScript(self.build_manager_script())
if self.xyz:
print("Creating MonoCameras, Stereo and SpatialLocationCalculator nodes...")
# For now, RGB needs fixed focus to properly align with depth.
# The value used during calibration should be used here
calib_data = self.device.readCalibration()
calib_lens_pos = calib_data.getLensPosition(dai.CameraBoardSocket.RGB)
print(f"RGB calibration lens position: {calib_lens_pos}")
cam.initialControl.setManualFocus(calib_lens_pos)
mono_resolution = dai.MonoCameraProperties.SensorResolution.THE_400_P
left = pipeline.createMonoCamera()
left.setBoardSocket(dai.CameraBoardSocket.LEFT)
left.setResolution(mono_resolution)
left.setFps(self.internal_fps)
right = pipeline.createMonoCamera()
right.setBoardSocket(dai.CameraBoardSocket.RIGHT)
right.setResolution(mono_resolution)
right.setFps(self.internal_fps)
stereo = pipeline.createStereoDepth()
stereo.setConfidenceThreshold(230)
# LR-check is required for depth alignment
stereo.setLeftRightCheck(True)
stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
stereo.setSubpixel(False) # subpixel True -> latency
# MEDIAN_OFF necessary in depthai 2.7.2.
# Otherwise : [critical] Fatal error. Please report to developers. Log: 'StereoSipp' '533'
# stereo.setMedianFilter(dai.StereoDepthProperties.MedianFilter.MEDIAN_OFF)
spatial_location_calculator = pipeline.createSpatialLocationCalculator()
spatial_location_calculator.setWaitForConfigInput(True)
spatial_location_calculator.inputDepth.setBlocking(False)
spatial_location_calculator.inputDepth.setQueueSize(1)
left.out.link(stereo.left)
right.out.link(stereo.right)
stereo.depth.link(spatial_location_calculator.inputDepth)
manager_script.outputs['spatial_location_config'].link(spatial_location_calculator.inputConfig)
spatial_location_calculator.out.link(manager_script.inputs['spatial_data'])
# Define pose detection pre processing (resize preview to (self.pd_input_length, self.pd_input_length))
print("Creating Pose Detection pre processing image manip...")
pre_pd_manip = pipeline.create(dai.node.ImageManip)
pre_pd_manip.setMaxOutputFrameSize(self.pd_input_length*self.pd_input_length*3)
pre_pd_manip.setWaitForConfigInput(True)
pre_pd_manip.inputImage.setQueueSize(1)
pre_pd_manip.inputImage.setBlocking(False)
cam.preview.link(pre_pd_manip.inputImage)
manager_script.outputs['pre_pd_manip_cfg'].link(pre_pd_manip.inputConfig)
# For debugging
# pre_pd_manip_out = pipeline.createXLinkOut()
# pre_pd_manip_out.setStreamName("pre_pd_manip_out")
# pre_pd_manip.out.link(pre_pd_manip_out.input)
# Define pose detection model
print("Creating Pose Detection Neural Network...")
pd_nn = pipeline.create(dai.node.NeuralNetwork)
pd_nn.setBlobPath(self.pd_model)
# Increase threads for detection
# pd_nn.setNumInferenceThreads(2)
pre_pd_manip.out.link(pd_nn.input)
# Define pose detection post processing "model"
print("Creating Pose Detection post processing Neural Network...")
post_pd_nn = pipeline.create(dai.node.NeuralNetwork)
post_pd_nn.setBlobPath(self.pp_model)
pd_nn.out.link(post_pd_nn.input)
post_pd_nn.out.link(manager_script.inputs['from_post_pd_nn'])
# Define link to send result to host
manager_out = pipeline.create(dai.node.XLinkOut)
manager_out.setStreamName("manager_out")
manager_script.outputs['host'].link(manager_out.input)
# Define landmark pre processing image manip
print("Creating Landmark pre processing image manip...")
pre_lm_manip = pipeline.create(dai.node.ImageManip)
pre_lm_manip.setMaxOutputFrameSize(self.lm_input_length*self.lm_input_length*3)
pre_lm_manip.setWaitForConfigInput(True)
pre_lm_manip.inputImage.setQueueSize(1)
pre_lm_manip.inputImage.setBlocking(False)
cam.preview.link(pre_lm_manip.inputImage)
# For debugging
# pre_lm_manip_out = pipeline.createXLinkOut()
# pre_lm_manip_out.setStreamName("pre_lm_manip_out")
# pre_lm_manip.out.link(pre_lm_manip_out.input)
manager_script.outputs['pre_lm_manip_cfg'].link(pre_lm_manip.inputConfig)
# Define normalization model between ImageManip and landmark model
# This is a temporary step. Could be removed when support of setFrameType(RGBF16F16F16p) in ImageManip node
print("Creating DiveideBy255 Neural Network...")
divide_nn = pipeline.create(dai.node.NeuralNetwork)
divide_nn.setBlobPath(self.divide_by_255_model)
pre_lm_manip.out.link(divide_nn.input)
# Define landmark model
print("Creating Landmark Neural Network...")
lm_nn = pipeline.create(dai.node.NeuralNetwork)
lm_nn.setBlobPath(self.lm_model)
# lm_nn.setNumInferenceThreads(1)
divide_nn.out.link(lm_nn.input)
lm_nn.out.link(manager_script.inputs['from_lm_nn'])
print("Pipeline created.")
return pipeline
def build_manager_script(self):
'''
The code of the scripting node 'manager_script' depends on :
- the NN model (full, lite, 831),
- the score threshold,
- the video frame shape
So we build this code from the content of the file template_manager_script.py which is a python template
'''
# Read the template
with open(TEMPLATE_MANAGER_SCRIPT, 'r') as file:
template = Template(file.read())
# Perform the substitution
code = template.substitute(
_TRACE = "node.warn" if self.trace else "#",
_pd_score_thresh = self.pd_score_thresh,
_lm_score_thresh = self.lm_score_thresh,
_force_detection = self.force_detection,
_pad_h = self.pad_h,
_img_h = self.img_h,
_img_w = self.img_w,
_frame_size = self.frame_size,
_crop_w = self.crop_w,
_rect_transf_scale = self.rect_transf_scale,
_IF_XYZ = "" if self.xyz else '"""',
_buffer_size = 2910 if self.xyz else 2863,
_visibility_threshold = self.visibility_threshold
)
# Remove comments and empty lines
import re
code = re.sub(r'"{3}.*?"{3}', '', code, flags=re.DOTALL)
code = re.sub(r'#.*', '', code)
code = re.sub('\n\s*\n', '\n', code)
# For debugging
if self.trace:
with open("tmp_code.py", "w") as file:
file.write(code)
return code
def is_present(self, body, lm_id):
return body.presence[lm_id] > self.presence_threshold
def lm_postprocess(self, body, lms, lms_world):
# lms : landmarks sent by Manager script node to host (list of 39*5 elements for full body or 31*5 for upper body)
lm_raw = np.array(lms).reshape(-1,5)
# Each keypoint have 5 information:
# - X,Y coordinates are local to the body of
# interest and range from [0.0, 255.0].
# - Z coordinate is measured in "image pixels" like
# the X and Y coordinates and represents the
# distance relative to the plane of the subject's
# hips, which is the origin of the Z axis. Negative
# values are between the hips and the camera;
# positive values are behind the hips. Z coordinate
# scale is similar with X, Y scales but has different
# nature as obtained not via human annotation, by
# fitting synthetic data (GHUM model) to the 2D
# annotation.
# - Visibility, after user-applied sigmoid denotes the
# probability that a keypoint is located within the
# frame and not occluded by another bigger body
# part or another object.
# - Presence, after user-applied sigmoid denotes the
# probability that a keypoint is located within the
# frame.
# Normalize x,y,z. Scaling in z = scaling in x = 1/self.lm_input_length
lm_raw[:,:3] /= self.lm_input_length
# Apply sigmoid on visibility and presence (if used later)
body.visibility = 1 / (1 + np.exp(-lm_raw[:,3]))
body.presence = 1 / (1 + np.exp(-lm_raw[:,4]))
# body.norm_landmarks contains the normalized ([0:1]) 3D coordinates of landmarks in the square rotated body bounding box
body.norm_landmarks = lm_raw[:,:3]
# Now calculate body.landmarks = the landmarks in the image coordinate system (in pixel) (body.landmarks)
src = np.array([(0, 0), (1, 0), (1, 1)], dtype=np.float32)
dst = np.array([ (x, y) for x,y in body.rect_points[1:]], dtype=np.float32) # body.rect_points[0] is left bottom point and points going clockwise!
mat = cv2.getAffineTransform(src, dst)
lm_xy = np.expand_dims(body.norm_landmarks[:self.nb_kps,:2], axis=0)
lm_xy = np.squeeze(cv2.transform(lm_xy, mat))
# A segment of length 1 in the coordinates system of body bounding box takes body.rect_w_a pixels in the
# original image. Then we arbitrarily divide by 4 for a more realistic appearance.
lm_z = body.norm_landmarks[:self.nb_kps,2:3] * body.rect_w_a / 4
lm_xyz = np.hstack((lm_xy, lm_z))
# World landmarks are predicted in meters rather than in pixels of the image
# and have origin in the middle of the hips rather than in the corner of the
# pose image (cropped with given rectangle). Thus only rotation (but not scale
# and translation) is applied to the landmarks to transform them back to
# original coordinates.
body.landmarks_world = np.array(lms_world).reshape(-1,3)
sin_rot = sin(body.rotation)
cos_rot = cos(body.rotation)
rot_m = np.array([[cos_rot, sin_rot], [-sin_rot, cos_rot]])
body.landmarks_world[:,:2] = np.dot(body.landmarks_world[:,:2], rot_m)
if self.smoothing:
timestamp = now()
object_scale = body.rect_w_a
lm_xyz[:self.nb_kps] = self.filter_landmarks.apply(lm_xyz[:self.nb_kps], timestamp, object_scale)
lm_xyz[self.nb_kps:] = self.filter_landmarks_aux.apply(lm_xyz[self.nb_kps:], timestamp, object_scale)
body.landmarks_world = self.filter_landmarks_world.apply(body.landmarks_world, timestamp)
body.landmarks = lm_xyz.astype(np.int32)
# If we added padding to make the image square, we need to remove this padding from landmark coordinates and from rect_points
if self.pad_h > 0:
body.landmarks[:,1] -= self.pad_h
for i in range(len(body.rect_points)):
body.rect_points[i][1] -= self.pad_h
# if self.pad_w > 0:
# body.landmarks[:,0] -= self.pad_w
# for i in range(len(body.rect_points)):
# body.rect_points[i][0] -= self.pad_w
def next_frame(self):
self.fps.update()
if self.laconic:
video_frame = np.zeros((self.frame_size, self.frame_size, 3), dtype=np.uint8)
else:
in_video = self.q_video.get()
video_frame = in_video.getCvFrame()
# For debugging
# pre_pd_manip = self.q_pre_pd_manip_out.tryGet()
# if pre_pd_manip:
# pre_pd_manip = pre_pd_manip.getCvFrame()
# cv2.imshow("pre_pd_manip", pre_pd_manip)
# pre_lm_manip = self.q_pre_lm_manip_out.tryGet()
# if pre_lm_manip:
# pre_lm_manip = pre_lm_manip.getCvFrame()
# cv2.imshow("pre_lm_manip", pre_lm_manip)
# Get result from device
res = marshal.loads(self.q_manager_out.get().getData())
if res["type"] != 0 and res["lm_score"] > self.lm_score_thresh:
body = mpu.Body()
body.rect_x_center_a = res["rect_center_x"] * self.frame_size
body.rect_y_center_a = res["rect_center_y"] * self.frame_size
body.rect_w_a = body.rect_h_a = res["rect_size"] * self.frame_size
body.rotation = res["rotation"]
body.rect_points = mpu.rotated_rect_to_points(body.rect_x_center_a, body.rect_y_center_a, body.rect_w_a, body.rect_h_a, body.rotation)
body.lm_score = res["lm_score"]
self.lm_postprocess(body, res['lms'], res['lms_world'])
if self.xyz:
if res['xyz_ref'] == 0:
body.xyz_ref = None
else:
if res['xyz_ref'] == 1:
body.xyz_ref = "mid_hips"
else: # res['xyz_ref'] == 2:
body.xyz_ref = "mid_shoulders"
body.xyz = np.array(res["xyz"])
if self.smoothing:
body.xyz = self.filter_xyz.apply(body.xyz)
body.xyz_zone = np.array(res["xyz_zone"])
body.xyz_ref_coords_pixel = np.mean(body.xyz_zone.reshape((2,2)), axis=0)
else:
body = None
if self.smoothing:
self.filter_landmarks.reset()
self.filter_landmarks_aux.reset()
self.filter_landmarks_world.reset()
if self.xyz: self.filter_xyz.reset()
# Statistics
if self.stats:
if res["type"] == 0:
self.nb_pd_inferences += 1
self.nb_frames_no_body += 1
else:
self.nb_lm_inferences += 1
if res["type"] == 1:
self.nb_pd_inferences += 1
else: # res["type"] == 2
self.nb_lm_inferences_after_landmarks_ROI += 1
if res["lm_score"] < self.lm_score_thresh: self.nb_frames_no_body += 1
return video_frame, body
def exit(self):
self.device.close()
# Print some stats
if self.stats:
print(f"FPS : {self.fps.get_global():.1f} f/s (# frames = {self.fps.nbf})")
print(f"# frames without body : {self.nb_frames_no_body}")
print(f"# pose detection inferences : {self.nb_pd_inferences}")
print(f"# landmark inferences : {self.nb_lm_inferences} - # after pose detection: {self.nb_lm_inferences - self.nb_lm_inferences_after_landmarks_ROI} - # after landmarks ROI prediction: {self.nb_lm_inferences_after_landmarks_ROI}")