forked from mainearth/Daily-Gap-free-NDVI-Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpload_Daily_Gap-filled_NDVI_Codes.py
565 lines (532 loc) · 31.3 KB
/
Upload_Daily_Gap-filled_NDVI_Codes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# coding:utf-8
# @Time : 2023/10/25
# @Author : Huiwen Li
# @FileName: Daily_Gap-filled_NDVI_Codes.py
import os
import time
import numpy as np
from osgeo import osr,ogr,gdal
from netCDF4 import Dataset
import matplotlib.pyplot as plt
import pandas as pd
import warnings
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import scipy.interpolate as spi
from scipy.interpolate import interp1d
import scipy as sc
from scipy.optimize import minimize
from multiprocessing import Pool
import copy
from numba import jit
import numba
warnings.filterwarnings("ignore")
def read_all_files_inside_filepath(filepath,filetype,final_file_list):
pathDir=os.listdir(filepath)
for each in pathDir:
newDir=os.path.join(filepath,each)
if os.path.isfile(newDir):
if os.path.splitext(newDir)[1]==filetype:
final_file_list.append(newDir.replace("\\","/"))
else:
read_all_files_inside_filepath(newDir,filetype,final_file_list)
def get_all_type_files(filepath,filetype):
final_file_list=[]
read_all_files_inside_filepath(filepath,filetype,final_file_list)
return final_file_list
def read_raster_line_allcell_value(input_rasterfile,start_line_index,im_width,line_num):
dataset=gdal.Open(input_rasterfile)
line_allcell=dataset.ReadAsArray(0,start_line_index,im_width,line_num)
line_allcell_setnull=np.around(np.array(line_allcell),decimals=3)
line_allcell_setnull[line_allcell_setnull==-9999.0]=np.nan
line_allcell_setnull=np.around(np.array(line_allcell_setnull*1000),decimals=0)
return line_allcell_setnull.astype(str)
def get_processing(i,list_length):
if int(i) in [int(list_length*0.1),int(list_length*0.2),int(list_length*0.3),int(list_length*0.4),int(list_length*0.5),int(list_length*0.6),int(list_length*0.7),int(list_length*0.8),int(list_length*0.9),list_length-1]:
print(str(i)+', Progress:'+str(round((int(i)+1)*100.0/list_length,0))+'%')
def read_raster_ts_line_allcell(img_path_list,start_line_index,im_width,line_num):
line_allcell_ts_value=np.full([line_num*len(img_path_list),im_width+2],'n').astype('U11')
for i in img_path_list:
i_index=img_path_list.index(i)
cell_time=i.split('/')[-1][:8]
line_allcell_setnull=read_raster_line_allcell_value(i,start_line_index,im_width,line_num)
line_allcell_ts_value[i_index*line_num:(i_index+1)*line_num,0]=cell_time
line_allcell_ts_value[i_index*line_num:(i_index+1)*line_num,1]=np.arange(start_line_index,start_line_index+line_num).astype(str)
line_allcell_ts_value[i_index*line_num:(i_index+1)*line_num,2:]=line_allcell_setnull
get_processing(img_path_list.index(i),len(img_path_list))
line_allcell_ts_value[line_allcell_ts_value=='nan']='n'
return line_allcell_ts_value
@jit()
def change_line_all_nan(list_2dim):
for line in range(len(list_2dim)):
if np.unique(list_2dim[line][2:]).shape[0]==1 and list_2dim[line][2]=='n':
list_2dim[line]=[list_2dim[line][0],list_2dim[line][1],'ALLN']
else:
pass
return list_2dim
def write_2dim_list_to_txt_file(csv_file,listdata):
f=open(csv_file,'w')
for eachi in listdata[:-1]:
if len(eachi)==1:
f.write(eachi[0]+'\n')
else:
for eachj in eachi[:-1]:
f.write(eachj+',')
f.write(eachi[-1]+'\n')
for lasti in listdata[-1][:-1]:
f.write(lasti+',')
f.write(listdata[-1][-1])
f.close()
def read_2dim_txt(txt_file):
f=open(txt_file,'r')
c=f.read()
c_all=c.split('\n')
all_data_list=[]
all_time_list=[]
max_column_num=0
for i in range(len(c_all)):
column_data=c_all[i].split(',')
all_data_list.append(column_data)
all_time_list.append(column_data[0])
if max_column_num<len(column_data):
max_column_num=len(column_data)
f.close()
return all_data_list,all_time_list,max_column_num
@jit()
def generate_line_all_line_array(thisline_all_data_list):
this_line_all_column_array=np.full([len(thisline_all_data_list),7200],np.nan)
for i in range(len(thisline_all_data_list)):
if thisline_all_data_list[i][2]=='ALLN':
pass
else:
initial_data=np.array(thisline_all_data_list[i][2:])
initial_data[initial_data=='n']=np.nan
this_line_all_column_array[i,:]=np.round(initial_data.astype(float)/1000,decimals=4)
return this_line_all_column_array
def get_all_usefull_data_jit(daily_data,pd_time,threshold):
first_year=int(pd_time[0,1])
last_year=int(pd_time[-1,1])
first_year_month=int(pd_time[0,2])
last_year_month=int(pd_time[-1,2])
month_all_max_value,all_max_v_moth_time=jit_get_usefull_data(first_year,last_year,daily_data,pd_time,first_year_month,last_year_month,threshold)
usefull_ndvi_time_DF=pd.DataFrame(data=month_all_max_value,index=pd.to_datetime(all_max_v_moth_time,format='%Y%m%d'),columns=['NDVI'])
sorted_usefull_ndvi_time_DF=usefull_ndvi_time_DF.sort_values(by='NDVI',ascending=False)
if sorted_usefull_ndvi_time_DF.shape[0]>5:
mean_ndvi_2_4=np.nanmean(sorted_usefull_ndvi_time_DF.iloc[np.arange(1,5)]['NDVI'])
else:
pass
# If the maximum value in the entire time series is 39% greater than the mean of adjacent 4 data points, delete this outlier.
return sorted_usefull_ndvi_time_DF[((sorted_usefull_ndvi_time_DF['NDVI']-mean_ndvi_2_4)/mean_ndvi_2_4<0.39) & (sorted_usefull_ndvi_time_DF['NDVI']>0)]
@jit()
def jit_get_usefull_data(first_year,last_year,daily_data,pd_time,first_year_month,last_year_month,threshold):
month_all_max_value=[1]
all_max_v_moth_time=[1]
for year in range(first_year,last_year+1):
if year == first_year:
start_mon=first_year_month
end_mon=12
elif year== last_year:
start_mon=1
end_mon=last_year_month
else:
start_mon=1
end_mon=12
for m in range(start_mon,end_mon+1):
this_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m)]
this_m_time=pd_time[(pd_time[:,1]==year) & (pd_time[:,2]==m)][:,0]
sorted_index=np.argsort(this_m_value)
# If the monthly max value is 20% larger than any other values in this month, delete this outlier.
if this_m_value[sorted_index[-1]]/this_m_value[sorted_index[-2]]>1.2:
this_m_value=np.delete(this_m_value,sorted_index[-1])
this_m_time=np.delete(this_m_time,sorted_index[-1])
this_m_max_value=np.nanmax(this_m_value)
if year!=first_year and year != last_year:
if m>1 and m<12:
next_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m+1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m-1)]
last_m_max_value=np.nanmax(last_m_value)
elif m==1:
next_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m+1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year-1) & (pd_time[:,2]==12)]
last_m_max_value=np.nanmax(last_m_value)
elif m==12:
next_m_value=daily_data[(pd_time[:,1]==year+1) & (pd_time[:,2]==1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m-1)]
last_m_max_value=np.nanmax(last_m_value)
this_next_m_max_value_mean=np.nanmean([last_m_max_value,this_m_max_value,next_m_max_value])
this_next_m_max_value_min=np.nanmin([last_m_max_value,this_m_max_value,next_m_max_value])
month_all_max_value=np.hstack([month_all_max_value,this_m_value[(this_m_value/this_next_m_max_value_mean>=threshold) | (this_m_value/this_next_m_max_value_min>=threshold)].tolist()])
all_max_v_moth_time=np.hstack([all_max_v_moth_time,this_m_time[(this_m_value/this_next_m_max_value_mean>=threshold) | (this_m_value/this_next_m_max_value_min>=threshold)].tolist()])
elif year==first_year:
if m==first_year_month:
next_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m+1)]
next_m_max_value=np.nanmax(next_m_value)
this_next_m_max_value_mean=np.nanmean([this_m_max_value,next_m_max_value])
this_next_m_max_value_min=np.nanmin([this_m_max_value,next_m_max_value])
elif m<12:
next_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m+1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m-1)]
last_m_max_value=np.nanmax(last_m_value)
this_next_m_max_value_mean=np.nanmean([last_m_max_value,this_m_max_value,next_m_max_value])
this_next_m_max_value_min=np.nanmin([last_m_max_value,this_m_max_value,next_m_max_value])
elif m==12:
next_m_value=daily_data[(pd_time[:,1]==year+1) & (pd_time[:,2]==1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m-1)]
last_m_max_value=np.nanmax(last_m_value)
this_next_m_max_value_mean=np.nanmean([last_m_max_value,this_m_max_value,next_m_max_value])
this_next_m_max_value_min=np.nanmin([last_m_max_value,this_m_max_value,next_m_max_value])
month_all_max_value=np.hstack([month_all_max_value,this_m_value[(this_m_value/this_next_m_max_value_mean>=threshold) | (this_m_value/this_next_m_max_value_min>=threshold)].tolist()])
all_max_v_moth_time=np.hstack([all_max_v_moth_time,this_m_time[(this_m_value/this_next_m_max_value_mean>=threshold) | (this_m_value/this_next_m_max_value_min>=threshold)].tolist()])
elif year==last_year:
if m==1 and m!=last_year_month:
next_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m+1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year-1) & (pd_time[:,2]==12)]
last_m_max_value=np.nanmax(last_m_value)
this_next_m_max_value_mean=np.nanmean([last_m_max_value,this_m_max_value,next_m_max_value])
this_next_m_max_value_min=np.nanmin([last_m_max_value,this_m_max_value,next_m_max_value])
elif m<12 and m!=last_year_month:
next_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m+1)]
next_m_max_value=np.nanmax(next_m_value)
last_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m-1)]
last_m_max_value=np.nanmax(last_m_value)
this_next_m_max_value_mean=np.nanmean([last_m_max_value,this_m_max_value,next_m_max_value])
this_next_m_max_value_min=np.nanmin([last_m_max_value,this_m_max_value,next_m_max_value])
elif m==last_year_month:
last_m_value=daily_data[(pd_time[:,1]==year) & (pd_time[:,2]==m-1)]
last_m_max_value=np.nanmax(last_m_value)
this_next_m_max_value_mean=np.nanmean([last_m_max_value,this_m_max_value])
this_next_m_max_value_min=np.nanmin([last_m_max_value,this_m_max_value])
month_all_max_value=np.hstack([month_all_max_value,this_m_value[(this_m_value/this_next_m_max_value_mean>=threshold) | (this_m_value/this_next_m_max_value_min>=threshold)].tolist()])
all_max_v_moth_time=np.hstack([all_max_v_moth_time,this_m_time[(this_m_value/this_next_m_max_value_mean>=threshold) | (this_m_value/this_next_m_max_value_min>=threshold)].tolist()])
return month_all_max_value[1:],all_max_v_moth_time[1:]
def fit_data_with_annual_piecewise_fitting_nppolyfit(pd_time,usefull_ndvi_time_DF):
all_data=np.full(pd_time.shape[0],fill_value=-1.0)
all_years=np.unique(usefull_ndvi_time_DF.index.year)
for y in all_years:
if y>all_years[0] and y<all_years[-1]:
this_year_usefull_data_DF=usefull_ndvi_time_DF[(usefull_ndvi_time_DF.index.year==y) | ((usefull_ndvi_time_DF.index.year==y-1) & (usefull_ndvi_time_DF.index.month>=10)) | ((usefull_ndvi_time_DF.index.year==y+1) & (usefull_ndvi_time_DF.index.month<=3))]
elif y==all_years[0]:
this_year_usefull_data_DF=usefull_ndvi_time_DF[(usefull_ndvi_time_DF.index.year==y) | ((usefull_ndvi_time_DF.index.year==y+1) & (usefull_ndvi_time_DF.index.month<=3))]
else:
this_year_usefull_data_DF=usefull_ndvi_time_DF[(usefull_ndvi_time_DF.index.year==y) | ((usefull_ndvi_time_DF.index.year==y-1) & (usefull_ndvi_time_DF.index.month>=10))]
this_year_usefull_data_DF=this_year_usefull_data_DF.sort_index()
this_year_usefull_time_index=np.array([np.argwhere(pd_time==i)[0,0] for i in this_year_usefull_data_DF.index])+1
this_year_all_data_time=pd_time[pd_time.year==y]
this_year_all_data_time_index=np.array([np.argwhere(pd_time==i)[0,0] for i in this_year_all_data_time])+1
all_data[this_year_all_data_time_index-1]=fit_this_year_data_piecewise_fitting_nppolyfit(y,this_year_usefull_time_index,this_year_usefull_data_DF,this_year_all_data_time_index)
return all_data
@jit()
def fit_this_year_data_piecewise_fitting_nppolyfit(y,this_year_usefull_time_index,this_year_usefull_data_DF,this_year_all_data_time_index):
if y==1981 or y==2023:
polyfit_fun=np.polyfit(this_year_usefull_time_index, this_year_usefull_data_DF.values.reshape(-1), 4)
this_year_all_spline_values = np.polyval(polyfit_fun,this_year_all_data_time_index)
else:
if this_year_usefull_data_DF['NDVI'].idxmax().year==y:
max_value_index=np.argwhere(this_year_usefull_data_DF.index==this_year_usefull_data_DF['NDVI'].idxmax())[0,0]
first_this_year_usefull_time_index=this_year_usefull_time_index[:max_value_index+10]
first_this_year_usefull_data_DF=this_year_usefull_data_DF[:max_value_index+10]
second_this_year_usefull_time_index=this_year_usefull_time_index[max_value_index-10:]
second_this_year_usefull_data_DF=this_year_usefull_data_DF[max_value_index-10:]
if max_value_index+9<this_year_usefull_time_index.shape[0] and max_value_index-10>0:
if pd.to_datetime(this_year_usefull_data_DF.iloc[max_value_index+9].name).year==y and pd.to_datetime(this_year_usefull_data_DF.iloc[max_value_index-10].name).year==y:
first_this_year_all_data_time_index=this_year_all_data_time_index[:np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[max_value_index+9])[0,0]]
first_overlap_num=this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[max_value_index+9])[0,0]]-this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[max_value_index])[0,0]]
second_this_year_all_data_time_index=this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[max_value_index-10])[0,0]:]
second_overlap_num=this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[max_value_index])[0,0]]-this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[max_value_index-10])[0,0]]
first_polyfit_fun=np.polyfit(first_this_year_usefull_time_index, first_this_year_usefull_data_DF.values.reshape(-1), 4)
first_this_year_all_spline_values = np.polyval(first_polyfit_fun,first_this_year_all_data_time_index)
second_polyfit_fun=np.polyfit(second_this_year_usefull_time_index, second_this_year_usefull_data_DF.values.reshape(-1), 4)
second_this_year_all_spline_values = np.polyval(second_polyfit_fun,second_this_year_all_data_time_index)
overlap_sum_num=first_overlap_num+second_overlap_num
this_year_all_spline_values=np.hstack([first_this_year_all_spline_values[:-overlap_sum_num],np.mean([first_this_year_all_spline_values[-overlap_sum_num:],second_this_year_all_spline_values[:overlap_sum_num]],axis=0),second_this_year_all_spline_values[overlap_sum_num:]])
elif pd.to_datetime(this_year_usefull_data_DF.iloc[max_value_index+9].name).year!=y or pd.to_datetime(this_year_usefull_data_DF.iloc[max_value_index-10].name).year!=y:
polyfit_fun=np.polyfit(this_year_usefull_time_index, this_year_usefull_data_DF.values.reshape(-1), 4)
this_year_all_spline_values = np.polyval(polyfit_fun,this_year_all_data_time_index)
else:
polyfit_fun=np.polyfit(this_year_usefull_time_index, this_year_usefull_data_DF.values.reshape(-1), 4)
this_year_all_spline_values = np.polyval(polyfit_fun,this_year_all_data_time_index)
elif this_year_usefull_data_DF['NDVI'].idxmax().year!=y and this_year_usefull_data_DF['NDVI'].idxmin().year==y:
min_value_index=np.argwhere(this_year_usefull_data_DF.index==this_year_usefull_data_DF['NDVI'].idxmin())[0,0]
first_this_year_usefull_time_index=this_year_usefull_time_index[:min_value_index+10]
first_this_year_usefull_data_DF=this_year_usefull_data_DF[:min_value_index+10]
second_this_year_usefull_time_index=this_year_usefull_time_index[min_value_index-10:]
second_this_year_usefull_data_DF=this_year_usefull_data_DF[min_value_index-10:]
if min_value_index+9<this_year_usefull_time_index.shape[0] and min_value_index-10>0:
if this_year_usefull_time_index[min_value_index+9]>this_year_all_data_time_index[-1] or this_year_usefull_time_index[min_value_index-10]<this_year_all_data_time_index[0] or min_value_index-10<0:
polyfit_fun=np.polyfit(this_year_usefull_time_index, this_year_usefull_data_DF.values.reshape(-1), 4)
this_year_all_spline_values = np.polyval(polyfit_fun,this_year_all_data_time_index)
else:
first_this_year_all_data_time_index=this_year_all_data_time_index[:np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[min_value_index+9])[0,0]]
first_overlap_num=this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[min_value_index+9])[0,0]]-this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[min_value_index])[0,0]]
second_this_year_all_data_time_index=this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[min_value_index-10])[0,0]:]
second_overlap_num=this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[min_value_index])[0,0]]-this_year_all_data_time_index[np.argwhere(this_year_all_data_time_index==this_year_usefull_time_index[min_value_index-10])[0,0]]
first_polyfit_fun=np.polyfit(first_this_year_usefull_time_index, first_this_year_usefull_data_DF.values.reshape(-1), 4)
first_this_year_all_spline_values = np.polyval(first_polyfit_fun,first_this_year_all_data_time_index)
second_polyfit_fun=np.polyfit(second_this_year_usefull_time_index, second_this_year_usefull_data_DF.values.reshape(-1), 4)
second_this_year_all_spline_values = np.polyval(second_polyfit_fun,second_this_year_all_data_time_index)
overlap_sum_num=first_overlap_num+second_overlap_num
this_year_all_spline_values=np.hstack([first_this_year_all_spline_values[:-overlap_sum_num],np.mean([first_this_year_all_spline_values[-overlap_sum_num:],second_this_year_all_spline_values[:overlap_sum_num]],axis=0),second_this_year_all_spline_values[overlap_sum_num:]])
else:
polyfit_fun=np.polyfit(this_year_usefull_time_index, this_year_usefull_data_DF.values.reshape(-1), 4)
this_year_all_spline_values = np.polyval(polyfit_fun,this_year_all_data_time_index)
else:
polyfit_fun=np.polyfit(this_year_usefull_time_index, this_year_usefull_data_DF.values.reshape(-1), 4)
this_year_all_spline_values = np.polyval(polyfit_fun,this_year_all_data_time_index)
return this_year_all_spline_values
def get_MSE_RMSE_R2_for_predicted(observations_array,predicted_array):
mse=mean_squared_error(observations_array,predicted_array)
rmse=np.sqrt(mse)
r2=r2_score(observations_array,predicted_array)
pb=(np.nanmean(predicted_array)-np.nanmean(observations_array))*100.0/np.nanmean(observations_array)
return rmse,r2,pb
def get_processing_fiting(line,i,list_length,starttime,endtime):
if int(i) in [int(list_length*0.1),int(list_length*0.2),int(list_length*0.3),int(list_length*0.4),int(list_length*0.5),int(list_length*0.6),int(list_length*0.7),int(list_length*0.8),int(list_length*0.9),list_length-1]:
print('l:'+str(line)+'_c:'+str(i)+', Progress:'+str(round((int(i)+1)*100.0/list_length,0))+'%: '+str(round((endtime-starttime)/60.0,4))+" min; ")
def read_2dim_txt_simple(txt_file):
f=open(txt_file,'r')
c=f.read()
c_all=c.split('\n')
all_data_list=[]
for i in range(len(c_all)):
column_data=c_all[i].split(',')
all_data_list.append(column_data)
f.close()
return all_data_list
def write_rasterfile_withnodata(output_rasterfile,im_data,im_width,im_height,im_bands,im_geotrans,im_proj,NoDataValue):
driver=gdal.GetDriverByName("GTiff")
datasetnew=driver.Create(output_rasterfile,im_width,im_height,im_bands,gdal.GDT_Float32)
datasetnew.SetGeoTransform(im_geotrans)
datasetnew.SetProjection(im_proj)
datasetnew.GetRasterBand(1).SetNoDataValue(float(NoDataValue))
datasetnew.GetRasterBand(1).WriteArray(im_data)
del datasetnew
def read_rasterfile(input_rasterfile):
dataset=gdal.Open(input_rasterfile)
im_width=dataset.RasterXSize
im_height=dataset.RasterYSize
im_bands=dataset.RasterCount
im_geotrans=dataset.GetGeoTransform()
im_proj=dataset.GetProjection()
im_data=dataset.ReadAsArray(0,0,im_width,im_height)
NoDataValue=dataset.GetRasterBand(1).GetNoDataValue()
return [im_data,im_width,im_height,im_bands,im_geotrans,im_proj,NoDataValue]
def write_ts_line_allcell_totxt(avhrr_tif_path,save_txt_filepath,line_index_list):
starttime=time.time()
all_daily_avhrr_list=get_all_type_files(avhrr_tif_path,'.tif')
all_daily_avhrr_list.sort()
print('file found, reading...')
start_line_index=line_index_list[0]
im_width=7200
line_num=len(line_index_list)
line_allcell_ts_value=read_raster_ts_line_allcell(all_daily_avhrr_list,start_line_index,im_width,line_num)
endtime=time.time()
print('reading file time: '+str(round((endtime-starttime)/60.0,2))+" min")
for i in line_index_list:
starttime1=time.time()
save_file=save_txt_filepath+'line_['+str(i)+'].txt'
if os.path.exists(save_file) and os.path.getsize(save_file) > 2048:
pass
else:
print('data loaded, writing txt...')
this_line_all_data=line_allcell_ts_value[line_allcell_ts_value[:,1]==str(i)].tolist()
this_line_all_data=change_line_all_nan(this_line_all_data)
write_2dim_list_to_txt_file(save_file,this_line_all_data)
endtime2=time.time()
print('line: '+str(i) +' write done, consuming time: '+str(round((endtime2-starttime1)/60.0,2))+" min")
def fit_line_all_column_data_China(txt_filepath):
all_start_time=time.time()
threshold=0.8 #1-0.2
save_txt_filepath="Fitted NDVI txt file path"
thisline_all_data_list,all_time_list,max_column_num=read_2dim_txt(txt_filepath)
have_data_pd_time=np.vstack([all_time_list,[i[:4] for i in all_time_list],[i[4:6] for i in all_time_list],[i[6:] for i in all_time_list]]).T
have_data_pd_time=have_data_pd_time.astype(int)
line_number=thisline_all_data_list[0][1]
print('dealing line '+str(line_number)+' txt...')
start_date=thisline_all_data_list[0][0]
end_date=thisline_all_data_list[-1][0]
save_file=save_txt_filepath+'line_['+str(line_number)+'].txt'
if max_column_num==3:
print(str(line_number)+' all nan...')
listdata=[[line_number,start_date,end_date,'ALLN']]
write_2dim_list_to_txt_file(save_file,listdata)
else:
fitting_effect=np.full([3,1401],'n').astype('U11')
fitting_effect[0,0]='rmse'
fitting_effect[1,0]='r2'
fitting_effect[2,0]='pb'
fitting_effect_save_file="Fitted NDVI effect txt file path/"+'line_['+str(line_number)+'].txt'
print('fitting line '+str(line_number)+' data...')
pd_time=pd.date_range(start=start_date,end=end_date,freq='D')
this_line_save_data=np.full([pd_time.shape[0],1401],'n').astype('U11')
this_line_save_data[:,0]=pd_time.strftime('%Y%m%d')
this_line_all_column_array=generate_line_all_line_array(thisline_all_data_list)
print('all column data loaded...')
starttime=time.time()
for c in range(5000,6400):
starttime1=time.time()
if np.isnan(this_line_all_column_array[:,c]).sum()==this_line_all_column_array.shape[0]:
pass
endtime1=time.time()
else:
thiscolumn_alldaily_data=this_line_all_column_array[:,c]
if np.isnan(this_line_all_column_array[:,c]).sum()/this_line_all_column_array.shape[0]>0.3:
pass
endtime1=time.time()
else:
usefull_ndvi_time_DF=get_all_usefull_data_jit(thiscolumn_alldaily_data,have_data_pd_time,threshold)
endtime1=time.time()
this_line_fitted_data=fit_data_with_annual_piecewise_fitting_nppolyfit(pd_time,usefull_ndvi_time_DF)
this_line_fitted_data_DF=pd.DataFrame(index=pd_time,data=this_line_fitted_data,columns=['NDVI'])
rmse,r2,pb=get_MSE_RMSE_R2_for_predicted(usefull_ndvi_time_DF.values.reshape(-1),this_line_fitted_data_DF.loc[usefull_ndvi_time_DF.index].values.reshape(-1))
fitting_effect[0,c-5000+1]=rmse
fitting_effect[1,c-5000+1]=r2
fitting_effect[2,c-5000+1]=pb
this_line_save_data[:,c-5000+1]=np.round(this_line_fitted_data,decimals=3)
endtime2=time.time()
get_processing_fiting(line_number,c-5000,np.arange(5000,6400).shape[0],starttime,endtime2)
write_2dim_list_to_txt_file(save_file,this_line_save_data.tolist())
write_2dim_list_to_txt_file(fitting_effect_save_file,fitting_effect.tolist())
all_endtime=time.time()
print(str(line_number)+' done: '+str(round((all_endtime-all_start_time)/60.0,4))+" min")
def convert_fitting_results_to_raster(input_filepath,out_put_raster_path):
RMSE_array=np.full([800,1400],-999.0)
r2_array=np.full([800,1400],-999.0)
pb_array=np.full([800,1400],-999.0)
all_txt_file=get_all_type_files(input_filepath,'.txt')
for i in range(len(all_txt_file)):
line_index=int(all_txt_file[i].split('[')[-1].split(']')[0])-700
this_line_rmse_r2_pb=read_2dim_txt_simple(all_txt_file[i])
RMSE=np.array(this_line_rmse_r2_pb[0][1:])
r2=np.array(this_line_rmse_r2_pb[1][1:])
pb=np.array(this_line_rmse_r2_pb[2][1:])
RMSE[RMSE=='n']=-999.0
r2[r2=='n']=-999.0
pb[pb=='n']=-999.0
RMSE=RMSE.astype(float)
r2=r2.astype(float)
pb=pb.astype(float)
RMSE_array[line_index]=RMSE
r2_array[line_index]=r2
pb_array[line_index]=pb
get_processing(i,len(all_txt_file))
nc_ref_data='A reference NOAA CDR NDVI nc file'
f = Dataset(nc_ref_data)
v = f.variables
lon=v['longitude'][:]
lat=v['latitude'][:]
lon_resoltion=lon[1]-lon[0]
lat_resoltion=lat[1]-lat[0]
im_width=1400
im_height=800
im_bands=1
im_geotrans=[lon[5000],lon_resoltion,0.0,lat[700],0.0,lat_resoltion]
im_proj='''GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]]'''
rmse_file=out_put_raster_path+'RMSE.tif'
r2_file=out_put_raster_path+'r2.tif'
pb_file=out_put_raster_path+'pb.tif'
write_rasterfile_withnodata(rmse_file,RMSE_array,im_width,im_height,im_bands,im_geotrans,im_proj,-999.0)
write_rasterfile_withnodata(r2_file,r2_array,im_width,im_height,im_bands,im_geotrans,im_proj,-999.0)
write_rasterfile_withnodata(pb_file,pb_array,im_width,im_height,im_bands,im_geotrans,im_proj,-999.0)
def convert_fitted_txt_to_raster(fitted_txt_fileptah,start_index,end_index,output_raster_path):
lines_data=np.full([15296,end_index-start_index,1400],-9.0)
for i in range(start_index,end_index):
this_line_txtpath=fitted_txt_fileptah+'line_['+str(i)+'].txt'
line_index=i-start_index
this_line_all_data=np.array(read_2dim_txt_simple(this_line_txtpath))
this_line_all_data[this_line_all_data=='n']=-9.0
if i==start_index:
start_time=this_line_all_data[0,0]
end_time=this_line_all_data[-1,0]
all_time_array=this_line_all_data[:,0]
lines_data[:,line_index,:]=this_line_all_data[:,1:].astype(float)
get_processing(i-start_index,end_index-start_index)
lines_data[(lines_data<-1) | (lines_data>1)]=-9.0
nc_ref_data='A reference NOAA CDR NDVI nc file'
f = Dataset(nc_ref_data)
v = f.variables
lon=v['longitude'][:]
lat=v['latitude'][:]
lon_resoltion=lon[1]-lon[0]
lat_resoltion=lat[1]-lat[0]
im_width=1400
im_height=end_index-start_index
im_bands=1
im_geotrans=[lon[5000],lon_resoltion,0.0,lat[start_index],0.0,lat_resoltion]
im_proj='''GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]]'''
print('converting data...')
for d in range(lines_data.shape[0]):
year=all_time_array[d][:4]
fitted_raster_file=output_raster_path+year+'/NDVI_'+str(start_index)+'-'+str(end_index)+'_'+all_time_array[d]+'.tif'
write_rasterfile_withnodata(fitted_raster_file,lines_data[d],im_width,im_height,im_bands,im_geotrans,im_proj,-9.0)
get_processing(d,lines_data.shape[0])
def mosaic_rasters2one(input_filepath,output_raster_path):
all_raster_file=get_all_type_files(input_filepath,'.tif')
days=int(len(all_raster_file)/6.0)
[im_data,im_width,im_height,im_bands,im_geotrans,im_proj,NoDataValue]=read_rasterfile(all_raster_file[days*3])
print(all_raster_file[days*3].split('NDVI_')[-1])
for i in range(days):
file_700_840=all_raster_file[i+days*3]
file_840_980=all_raster_file[i+days*4]
file_980_1120=all_raster_file[i+days*5]
file_1120_1260=all_raster_file[i]
file_1260_1400=all_raster_file[i+days*1]
file_1400_1500=all_raster_file[i+days*2]
data_700_840=read_rasterfile(file_700_840)[0]
data_840_980=read_rasterfile(file_840_980)[0]
data_980_1120=read_rasterfile(file_980_1120)[0]
data_1120_1260=read_rasterfile(file_1120_1260)[0]
data_1260_1400=read_rasterfile(file_1260_1400)[0]
data_1400_1500=read_rasterfile(file_1400_1500)[0]
this_year_daily_rater=np.vstack([data_700_840,data_840_980,data_980_1120,data_1120_1260,data_1260_1400,data_1400_1500])
this_year_data_file=output_raster_path+'CHN_NDVI_'+all_raster_file[i].split('_')[-1]
im_width=1400
im_height=1500-700
im_bands=1
im_proj='''GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]]'''
write_rasterfile_withnodata(this_year_data_file,this_year_daily_rater,im_width,im_height,im_bands,im_geotrans,im_proj,NoDataValue)
get_processing(i,days)
def main():
os.chdir('The project file path')
'''
Directly processing all daily-scale raster data would consume a significant amount of computer memory.
In this study, data is processed line by line, and all rasters are initially converted into txt files.
'''
#1. Store all daily scale raters as txt files in rows
avhrr_tif_path='NOAA CDR daily NDVI raster file path'
save_txt_filepath="The conerted txt file path"
for i in np.arange(0,3600,1):
line_index_list=np.arange(i,i+1).tolist()
write_ts_line_allcell_totxt(avhrr_tif_path,save_txt_filepath,line_index_list)
#2. Read txt files within China for NDVI reconstruction
all_txt_file=get_all_type_files("The conerted txt file path",'.txt')
all_txt_file.sort(key=len)
# Data range of China: lines: 700~1500; Columns: 5000~6400
for i in range(700,1501):
fit_line_all_column_data_China(all_txt_file[i])
#3. Convert the reconstruction effect txt file to raster file
input_filepath='Reconstruction effect txt file path'
out_put_raster_path='Reconstruction effect raster file path'
convert_fitting_results_to_raster(input_filepath,out_put_raster_path)
#4. Convert the reconstructed NDVI txt files to raster files
fitted_txt_fileptah='Fitted NDVI txt file path'
output_raster_path='Output NDVI raster file path'
for i in np.linspace(700,1400,6)[:]:
start_index=int(i)
if i==1400:
end_index=int(i+100)
else:
end_index=int(i+140)
convert_fitted_txt_to_raster(fitted_txt_fileptah,start_index,end_index,output_raster_path)
#5. Mosaic multi-line raster to one complete raster file
for year in range(1981,2024):
input_filepath='Input reconstructed multi-line NDVI raster file path/'+str(year)+'/'
output_raster_path='File path of the Reconstructed NDVI raster in China/'+str(year)+'/'
mosaic_rasters2one(input_filepath,output_raster_path)
print(str(year)+' done')
if __name__ == '__main__':
main()