-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.py
executable file
·276 lines (258 loc) · 10.2 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from __future__ import division
import nltk
from nltk.corpus import wordnet as wn
from nltk.corpus import brown
import math
import numpy as np
import sys
import os
import csv
# Parameters to the algorithm. Currently set to values that was reported
# in the paper to produce "best" results.
ALPHA = 0.2
BETA = 0.45
ETA = 0.4
PHI = 0.2
DELTA = 0.85
brown_freqs = dict()
N = 0
######################### word similarity ##########################
def get_best_synset_pair(word_1, word_2):
"""
Choose the pair with highest path similarity among all pairs.
Mimics pattern-seeking behavior of humans.
"""
max_sim = -1.0
synsets_1 = wn.synsets(word_1)
synsets_2 = wn.synsets(word_2)
if len(synsets_1) == 0 or len(synsets_2) == 0:
return None, None
else:
max_sim = -1.0
best_pair = None, None
for synset_1 in synsets_1:
for synset_2 in synsets_2:
sim = wn.path_similarity(synset_1, synset_2)
if sim > max_sim:
max_sim = sim
best_pair = synset_1, synset_2
return best_pair
def length_dist(synset_1, synset_2):
"""
Return a measure of the length of the shortest path in the semantic
ontology (Wordnet in our case as well as the paper's) between two
synsets.
"""
l_dist = sys.maxint
if synset_1 is None or synset_2 is None:
return 0.0
if synset_1 == synset_2:
# if synset_1 and synset_2 are the same synset return 0
l_dist = 0.0
else:
wset_1 = set([str(x.name()) for x in synset_1.lemmas()])
wset_2 = set([str(x.name()) for x in synset_2.lemmas()])
if len(wset_1.intersection(wset_2)) > 0:
# if synset_1 != synset_2 but there is word overlap, return 1.0
l_dist = 1.0
else:
# just compute the shortest path between the two
l_dist = synset_1.shortest_path_distance(synset_2)
if l_dist is None:
l_dist = 0.0
# normalize path length to the range [0,1]
return math.exp(-ALPHA * l_dist)
def hierarchy_dist(synset_1, synset_2):
"""
Return a measure of depth in the ontology to model the fact that
nodes closer to the root are broader and have less semantic similarity
than nodes further away from the root.
"""
h_dist = sys.maxint
if synset_1 is None or synset_2 is None:
return h_dist
if synset_1 == synset_2:
# return the depth of one of synset_1 or synset_2
h_dist = max([x[1] for x in synset_1.hypernym_distances()])
else:
# find the max depth of least common subsumer
hypernyms_1 = {x[0]:x[1] for x in synset_1.hypernym_distances()}
hypernyms_2 = {x[0]:x[1] for x in synset_2.hypernym_distances()}
lcs_candidates = set(hypernyms_1.keys()).intersection(
set(hypernyms_2.keys()))
if len(lcs_candidates) > 0:
lcs_dists = []
for lcs_candidate in lcs_candidates:
lcs_d1 = 0
if hypernyms_1.has_key(lcs_candidate):
lcs_d1 = hypernyms_1[lcs_candidate]
lcs_d2 = 0
if hypernyms_2.has_key(lcs_candidate):
lcs_d2 = hypernyms_2[lcs_candidate]
lcs_dists.append(max([lcs_d1, lcs_d2]))
h_dist = max(lcs_dists)
else:
h_dist = 0
return ((math.exp(BETA * h_dist) - math.exp(-BETA * h_dist)) /
(math.exp(BETA * h_dist) + math.exp(-BETA * h_dist)))
def word_similarity(word_1, word_2):
synset_pair = get_best_synset_pair(word_1, word_2)
return (length_dist(synset_pair[0], synset_pair[1]) *
hierarchy_dist(synset_pair[0], synset_pair[1]))
######################### sentence similarity ##########################
def most_similar_word(word, word_set):
"""
Find the word in the joint word set that is most similar to the word
passed in. We use the algorithm above to compute word similarity between
the word and each word in the joint word set, and return the most similar
word and the actual similarity value.
"""
max_sim = -1.0
sim_word = ""
for ref_word in word_set:
sim = word_similarity(word, ref_word)
if sim > max_sim:
max_sim = sim
sim_word = ref_word
#print max_sim
return sim_word, max_sim
def info_content(lookup_word):
"""
Uses the Brown corpus available in NLTK to calculate a Laplace
smoothed frequency distribution of words, then uses this information
to compute the information content of the lookup_word.
"""
global N
if N == 0:
# poor man's lazy evaluation
for sent in brown.sents():
for word in sent:
word = word.lower()
if not brown_freqs.has_key(word):
brown_freqs[word] = 0
brown_freqs[word] = brown_freqs[word] + 1
N = N + 1
lookup_word = lookup_word.lower()
n = 0 if not brown_freqs.has_key(lookup_word) else brown_freqs[lookup_word]
return 1.0 - (math.log(n + 1) / math.log(N + 1))
def semantic_vector(words, joint_words, info_content_norm):
"""
Computes the semantic vector of a sentence. The sentence is passed in as
a collection of words. The size of the semantic vector is the same as the
size of the joint word set. The elements are 1 if a word in the sentence
already exists in the joint word set, or the similarity of the word to the
most similar word in the joint word set if it doesn't. Both values are
further normalized by the word's (and similar word's) information content
if info_content_norm is True.
"""
sent_set = set(words)
semvec = np.zeros(len(joint_words))
i = 0
for joint_word in joint_words:
if joint_word in sent_set:
# if word in union exists in the sentence, s(i) = 1 (unnormalized)
semvec[i] = 1.0
if info_content_norm:
semvec[i] = semvec[i] * math.pow(info_content(joint_word), 2)
else:
# find the most similar word in the joint set and set the sim value
sim_word, max_sim = most_similar_word(joint_word, sent_set)
semvec[i] = PHI if max_sim > PHI else 0.0
if info_content_norm:
semvec[i] = semvec[i] * info_content(joint_word) * info_content(sim_word)
i = i + 1
return semvec
def semantic_similarity(sentence_1, sentence_2, info_content_norm):
"""
Computes the semantic similarity between two sentences as the cosine
similarity between the semantic vectors computed for each sentence.
"""
words_1 = nltk.word_tokenize(sentence_1)
words_2 = nltk.word_tokenize(sentence_2)
joint_words = set(words_1).union(set(words_2))
vec_1 = semantic_vector(words_1, joint_words, info_content_norm)
vec_2 = semantic_vector(words_2, joint_words, info_content_norm)
return np.dot(vec_1, vec_2.T) / (np.linalg.norm(vec_1) * np.linalg.norm(vec_2))
######################### word order similarity ##########################
def word_order_vector(words, joint_words, windex):
"""
Computes the word order vector for a sentence. The sentence is passed
in as a collection of words. The size of the word order vector is the
same as the size of the joint word set. The elements of the word order
vector are the position mapping (from the windex dictionary) of the
word in the joint set if the word exists in the sentence. If the word
does not exist in the sentence, then the value of the element is the
position of the most similar word in the sentence as long as the similarity
is above the threshold ETA.
"""
wovec = np.zeros(len(joint_words))
i = 0
wordset = set(words)
for joint_word in joint_words:
if joint_word in wordset:
# word in joint_words found in sentence, just populate the index
wovec[i] = windex[joint_word]
else:
# word not in joint_words, find most similar word and populate
# word_vector with the thresholded similarity
sim_word, max_sim = most_similar_word(joint_word, wordset)
if max_sim > ETA:
wovec[i] = windex[sim_word]
else:
wovec[i] = 0
i = i + 1
return wovec
def word_order_similarity(sentence_1, sentence_2):
"""
Computes the word-order similarity between two sentences as the normalized
difference of word order between the two sentences.
"""
words_1 = nltk.word_tokenize(sentence_1)
words_2 = nltk.word_tokenize(sentence_2)
joint_words = list(set(words_1).union(set(words_2)))
windex = {x[1]: x[0] for x in enumerate(joint_words)}
r1 = word_order_vector(words_1, joint_words, windex)
r2 = word_order_vector(words_2, joint_words, windex)
return 1.0 - (np.linalg.norm(r1 - r2) / np.linalg.norm(r1 + r2))
######################### overall similarity ##########################
def similarity(sentence_1, sentence_2, info_content_norm):
"""
Calculate the semantic similarity between two sentences. The last
parameter is True or False depending on whether information content
normalization is desired or not.
"""
return DELTA * semantic_similarity(sentence_1, sentence_2, info_content_norm) + \
(1.0 - DELTA) * word_order_similarity(sentence_1, sentence_2)
######################### main / test ##########################
# the results of the algorithm are largely dependent on the results of
# the word similarities, so we should test this first...
j=1
i=1
while(os.stat('dummy'+str(i)+'.csv').st_size<>0):
f=open('dummy'+str(i)+'.csv',"r")
for r1 in csv.reader(f):
text=r1[5]
# print text
break
f.close()
f3=open('dummy'+str(i)+'.csv',"r")
for r in csv.reader(f3):
line=r[5]
#take the first line of the file as your centroid
# open('','w').close()
# print line
line=line.strip('\n')
#for x in line:
# print x
similar_index=similarity(text,line,True)
if(similar_index>0.55):
f1=open('outcsv'+str(i+1)+'.csv',"a")
writer=csv.writer(f1)
writer.writerow(r)
# print r[5]+str(i+1)
else:
f2=open('dummy'+str(i+1)+'.csv',"a")
writer1=csv.writer(f2)
writer1.writerow(r)
#f2.write(line + '\n')
i=i+1