This repository has been archived by the owner on May 7, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathconfig_datasets.py
57 lines (48 loc) · 2.55 KB
/
config_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from collections import OrderedDict
import numpy as np
# COLORMAPS
cmaps = [('Perceptually Uniform Sequential',
['viridis', 'inferno', 'plasma', 'magma']),
('Sequential', ['Blues', 'BuGn', 'BuPu',
'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd',
'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu',
'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd']),
('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool',
'copper', 'gist_heat', 'gray', 'hot',
'pink', 'spring', 'summer', 'winter']),
('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr',
'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral',
'seismic']),
('Qualitative', ['Accent', 'Dark2', 'Paired', 'Pastel1',
'Pastel2', 'Set1', 'Set2', 'Set3']),
('Miscellaneous', ['gist_earth', 'terrain', 'ocean', 'gist_stern',
'brg', 'CMRmap', 'cubehelix',
'gnuplot', 'gnuplot2', 'gist_ncar',
'nipy_spectral', 'jet', 'rainbow',
'gist_rainbow', 'hsv', 'flag', 'prism'])]
# ##### CAMVID ##### #
colormap_camvid = OrderedDict([
(0, np.array([128, 128, 128], dtype=np.uint8)), # sky
(1, np.array([128, 0, 0], dtype=np.uint8)), # Building
(2, np.array([192, 192, 128], dtype=np.uint8)), # Pole
(3, np.array([128, 64, 128], dtype=np.uint8)), # Road
(4, np.array([0, 0, 192], dtype=np.uint8)), # Sidewalk
(5, np.array([128, 128, 0], dtype=np.uint8)), # Tree
(6, np.array([192, 128, 128], dtype=np.uint8)), # SignSymbol
(7, np.array([64, 64, 128], dtype=np.uint8)), # Fence
(8, np.array([64, 0, 128], dtype=np.uint8)), # Car
(9, np.array([64, 64, 0], dtype=np.uint8)), # Pedestrian
(10, np.array([0, 128, 192], dtype=np.uint8)), # Bicyclist
(11, np.array([0, 0, 0], dtype=np.uint8)) # Unlabeled
])
headers_camvid = ["Sky", "Building", "Column_Pole", "Road", "Sidewalk",
"Tree", "SignSymbol", "Fence", "Car", "Pedestrian",
"Bicyclist", "Void"]
# DATASET DICTIONARIES #
colormap_datasets = dict()
colormap_datasets["camvid"] = colormap_camvid
for key, value in colormap_datasets.iteritems():
colormap_datasets[key] = np.asarray(
[z for z in zip(*value.items())[1]]) / 255.
headers_datasets = dict()
headers_datasets["camvid"] = headers_camvid