This repository has been archived by the owner on May 7, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathcamvid.py
424 lines (357 loc) · 15.2 KB
/
camvid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from __future__ import division
import os
from collections import OrderedDict
import numpy as np
from skimage import img_as_ubyte
from skimage.color import label2rgb, rgb2hsv
from skimage.io import ImageCollection
from skimage.transform import resize
from itertools import izip
from config_datasets import (colormap_datasets as colors_list)
from helper_dataset import convert_RGB_mask_to_index, save_image
N_DEBUG = -5
DEBUG_SAVE_IMG = False
DEBUG_SAVE_MASK = False
intX = 'uint8'
def properties():
return { # 'reshape': [212, 264, 3],
# 'reorder': [0, 1, 2],
# 'rereorder': [0, 1, 2]
'has_void_class': True
}
"""
compare_mask_image_filenames:
mask = [i.split('/')[-1].replace('_L.png', '.png') for i in filenames_mask]
compare_mask_image_filenames_segnet
mask = [i.split('/')[-1].replace('annot', '') for i in filenames_mask]
"""
def load_images(img_path, gt_path, colors, load_greylevel_mask=False,
resize_images=False, resize_size=-1, save=False,
color_space='RGB'):
if load_greylevel_mask:
assert not save
images = []
masks = []
filenames_images = []
print "Loading images..."
# print img_path
labs = ImageCollection(os.path.join(img_path, "*.png"))
for i, (inpath, im) in enumerate(izip(labs.files, labs)):
if i == N_DEBUG:
break
assert np.amax(im) <= 255, "Image is not 8-bit"
if resize_images and resize_size != -1:
w, h = resize_size
im = resize(im, (h, w), order=3)
# order=3 : bicubic interpolation
# it's normalized by default btw 0-1 by the resize function
# so we want to preserve the range
im = img_as_ubyte(im)
im = im.astype(intX)
if color_space == "HSV":
im = rgb2hsv(im)
if DEBUG_SAVE_IMG:
outpath = inpath.replace('imgs', 'debug_imgs')
save_image(outpath, im)
images.append(im)
filenames_images.append(inpath)
print "Loading masks..."
if load_greylevel_mask:
gt_path = gt_path.replace("gt", "gt_grey")
filenames_mask = []
labs = ImageCollection(os.path.join(gt_path, "*.png"))
for i, (inpath, im) in enumerate(izip(labs.files, labs)):
if i == N_DEBUG:
break
if resize_images and resize_size != -1:
w, h = resize_size
im = (resize(im, (h, w), order=0) * 255).astype(np.uint8)
filenames_mask.append(inpath)
# print inpath
if load_greylevel_mask:
mask = im
else:
mask = convert_RGB_mask_to_index(
im, colors, ignore_missing_labels=True)
if save:
outpath = inpath.replace("gt", "gt_grey")
save_image(outpath, mask)
mask = np.array(mask).astype(intX)
if DEBUG_SAVE_MASK:
outpath = inpath.replace('gt', 'debug_gt')
outpath = inpath.replace('annot', 'debug_annot')
# print np.unique(mask)
save_image(outpath, label2rgb(mask, colors=colors_list['camvid']))
masks.append(mask)
assert len(images) == len(
masks), "Train Images and masks are not in the same quantity"
return images, masks, filenames_images
def load_dataset_camvid(path, load_greylevel_mask=False, classes='subset_11',
resize_images=False,
resize_size=-1,
use_standard_split=True,
save=False,
color_space='RGB'):
# WORKING: but image Seq05VD_f02610_L.png has some problems, some pixels
# have other values so I treated as Void
img_train_path = os.path.join(path, 'imgs', 'train')
img_test_path = os.path.join(path, 'imgs', 'test')
img_val_path = os.path.join(path, 'imgs', 'val')
gt_train_path = os.path.join(path, 'gt', 'train')
gt_test_path = os.path.join(path, 'gt', 'test')
gt_val_path = os.path.join(path, 'gt', 'val')
camvid_all_colors = OrderedDict([
("Animal", np.array([[64, 128, 64]], dtype=np.uint8)),
("Archway", np.array([[192, 0, 128]], dtype=np.uint8)),
("Bicyclist", np.array([[0, 128, 192]], dtype=np.uint8)),
("Bridge", np.array([[0, 128, 64]], dtype=np.uint8)),
("Building", np.array([[128, 0, 0]], dtype=np.uint8)),
("Car", np.array([[64, 0, 128]], dtype=np.uint8)),
("CartLuggagePram", np.array([[64, 0, 192]], dtype=np.uint8)),
("Child", np.array([[192, 128, 64]], dtype=np.uint8)),
("Column_Pole", np.array([[192, 192, 128]], dtype=np.uint8)),
("Fence", np.array([[64, 64, 128]], dtype=np.uint8)),
("LaneMkgsDriv", np.array([[128, 0, 192]], dtype=np.uint8)),
("LaneMkgsNonDriv", np.array([[192, 0, 64]], dtype=np.uint8)),
("Misc_Text", np.array([[128, 128, 64]], dtype=np.uint8)),
("MotorcycleScooter", np.array([[192, 0, 192]], dtype=np.uint8)),
("OtherMoving", np.array([[128, 64, 64]], dtype=np.uint8)),
("ParkingBlock", np.array([[64, 192, 128]], dtype=np.uint8)),
("Pedestrian", np.array([[64, 64, 0]], dtype=np.uint8)),
("Road", np.array([[128, 64, 128]], dtype=np.uint8)),
("RoadShoulder", np.array([[128, 128, 192]], dtype=np.uint8)),
("Sidewalk", np.array([[0, 0, 192]], dtype=np.uint8)),
("SignSymbol", np.array([[192, 128, 128]], dtype=np.uint8)),
("Sky", np.array([[128, 128, 128]], dtype=np.uint8)),
("SUVPickupTruck", np.array([[64, 128, 192]], dtype=np.uint8)),
("TrafficCone", np.array([[0, 0, 64]], dtype=np.uint8)),
("TrafficLight", np.array([[0, 64, 64]], dtype=np.uint8)),
("Train", np.array([[192, 64, 128]], dtype=np.uint8)),
("Tree", np.array([[128, 128, 0]], dtype=np.uint8)),
("Truck_Bus", np.array([[192, 128, 192]], dtype=np.uint8)),
("Tunnel", np.array([[64, 0, 64]], dtype=np.uint8)),
("VegetationMisc", np.array([[192, 192, 0]], dtype=np.uint8)),
("Wall", np.array([[64, 192, 0]], dtype=np.uint8)),
("Void", np.array([[0, 0, 0]], dtype=np.uint8))
])
camvid_11_colors = OrderedDict([
("Sky", np.array([[128, 128, 128]], dtype=np.uint8)),
("Building", np.array([[128, 0, 0], # Building
[64, 192, 0], # Wall
[0, 128, 64] # Bridge
], dtype=np.uint8)),
("Column_Pole", np.array([[192, 192, 128]], dtype=np.uint8)),
("Road", np.array([[128, 64, 128], # Road
[128, 0, 192], # LaneMkgsDriv
[192, 0, 64], # LaneMkgsNonDriv
[128, 128, 192] # RoadShoulder
], dtype=np.uint8)),
("Sidewalk", np.array([[0, 0, 192], # Sidewalk
[64, 192, 128] # ParkingBlock
], dtype=np.uint8)),
("Tree", np.array([[128, 128, 0], # Tree
[192, 192, 0] # VegetationMisc
], dtype=np.uint8)),
("SignSymbol", np.array([[192, 128, 128], # SignSymbol
# [128, 128, 64], # Misc_Text
[0, 64, 64], # TrafficLight
[0, 0, 64] # TrafficCone
], dtype=np.uint8)),
("Fence", np.array([[64, 64, 128]], dtype=np.uint8)),
("Car", np.array([[64, 0, 128], # Car
[192, 128, 192], # Truck_Bus
[64, 128, 192], # SUVPickupTruck
[128, 64, 64], # OtherMoving
[64, 0, 192], # CartLuggagePram
], dtype=np.uint8)),
("Pedestrian", np.array([[64, 64, 0], # Pedestrian
[192, 128, 64] # Child
], dtype=np.uint8)),
("Bicyclist", np.array([[0, 128, 192], # Bicyclist
[192, 0, 192], # MotorcycleScooter
], dtype=np.uint8)),
("Void", np.array([[0, 0, 0]], dtype=np.uint8))
]) # consider as void all the other classes
camvid_colors = camvid_11_colors if classes == 'subset_11' else \
camvid_all_colors
print "Processing Camvid train dataset..."
img_train, mask_train, filenames_train = load_images(
img_train_path, gt_train_path, camvid_colors, load_greylevel_mask,
resize_images, resize_size, save, color_space)
print "Processing Camvid test dataset..."
img_test, mask_test, filenames_test = load_images(
img_test_path, gt_test_path, camvid_colors, load_greylevel_mask,
resize_images, resize_size, save, color_space)
print "Processing Camvid validation dataset..."
img_val, mask_val, filenames_val = load_images(
img_val_path, gt_val_path, camvid_colors, load_greylevel_mask,
resize_images, resize_size, save, color_space)
return (img_train, mask_train, filenames_train,
img_test, mask_test, filenames_test,
img_val, mask_val, filenames_val)
def load_dataset_camvid_segnet(path):
img_train_path = os.path.join(path, 'train')
img_valid_path = os.path.join(path, 'val')
img_test_path = os.path.join(path, 'test')
gt_train_path = os.path.join(path, 'trainannot')
gt_valid_path = os.path.join(path, 'valannot')
gt_test_path = os.path.join(path, 'testannot')
camvid_colors = OrderedDict([
("Sky", np.array([128, 128, 128], dtype=np.uint8)),
("Building", np.array([128, 0, 0], dtype=np.uint8)),
("Column_Pole", np.array([192, 192, 128], dtype=np.uint8)),
("Road", np.array([128, 64, 128], dtype=np.uint8)),
("Sidewalk", np.array([0, 0, 192], dtype=np.uint8)),
("Tree", np.array([128, 128, 0], dtype=np.uint8)),
("SignSymbol", np.array([192, 128, 128], dtype=np.uint8)),
("Fence", np.array([64, 64, 128], dtype=np.uint8)),
("Car", np.array([64, 0, 128], dtype=np.uint8)),
("Pedestrian", np.array([64, 64, 0], dtype=np.uint8)),
("Bicyclist", np.array([0, 128, 192], dtype=np.uint8)),
("Void", np.array([0, 0, 0], dtype=np.uint8))
])
print "Processing Camvid SegNet train dataset..."
img_train, mask_train, filenames_train = load_images(
img_train_path, gt_train_path, camvid_colors, load_greylevel_mask=True,
save=False) # load_greylevel_mask=True by default because it's grey
print "Processing Camvid SegNet valid dataset..."
img_valid, mask_valid, filenames_valid = load_images(
img_valid_path, gt_valid_path, camvid_colors, load_greylevel_mask=True,
save=False) # load_greylevel_mask=True by default because it's grey
print "Processing Camvid SegNet test dataset..."
img_test, mask_test, filenames_test = load_images(
img_test_path, gt_test_path, camvid_colors, load_greylevel_mask=True,
save=False) # load_greylevel_mask=True by default because it's grey
return (img_train, mask_train, filenames_train,
img_test, mask_test, filenames_test,
img_valid, mask_valid, filenames_valid)
def load_data(
path=os.path.expanduser('./datasets/camvid/'),
randomize=False,
resize_images=True,
resize_size=[320, 240], # w x h : 960x720, 480x360, 320x240
color=False,
color_space='RGB',
normalize=False,
classes='subset_11', # subset_11 , all
version='segnet', # standard, segnet
split=[.44, .22],
with_filenames=False,
load_greylevel_mask=False,
save=False,
compute_stats='all',
rng=None,
with_fullmasks=False,
**kwargs
):
"""Dataset loader
Parameter
---------
path : string the path to the dataset images.
randomize False
resize False
use_fullsize_images True
version: string
standard, segnet
compute_stas: string
train, all
"""
#############
# LOAD DATA #
#############
if version == 'segnet':
path = os.path.join(path, 'segnet')
(img_train_segnet,
mask_train_segnet,
filenames_train_segnet,
img_test,
mask_test,
filenames_test,
img_val_segnet,
mask_val_segnet,
filenames_val_segnet) = load_dataset_camvid_segnet(path)
img_train = img_train_segnet
mask_train = mask_train_segnet
filenames_train = filenames_train_segnet
img_val = img_val_segnet
mask_val = mask_val_segnet
filenames_val = filenames_val_segnet
elif version == 'standard':
path = os.path.join(path, 'splitted_960x720')
(img_train,
mask_train,
filenames_train,
img_test,
mask_test,
filenames_test,
img_val,
mask_val,
filenames_val) = load_dataset_camvid(
path, resize_images=resize_images, resize_size=resize_size,
load_greylevel_mask=load_greylevel_mask, classes=classes,
save=save, color_space=color_space)
# if compute_stats == 'all':
# images = np.asarray(img_train + img_val + img_test)
# elif compute_stats == 'train':
# images = np.asarray(img_train)
# all images have the same dimension --> we can compute perpixel statistics
# mean = images.mean(axis=0)[np.newaxis, ...]
# std = np.maximum(images.std(axis=0), 1e-8)[np.newaxis, ...]
# print "Computing dataset statistics ..."
mean = 0
std = 0
# split datasets
ntrain = len(img_train)
ntest = len(img_test)
nvalid = len(img_val)
ntot = ntrain + ntest + nvalid
train_set_x = np.array(img_train)
train_set_y = np.array(mask_train)
test_set_x = np.array(img_test)
test_set_y = np.array(mask_test)
valid_set_x = np.array(img_val)
valid_set_y = np.array(mask_val)
# u_train, c_train = np.unique(train_set_y, return_counts=True)
# u_valid, c_valid = np.unique(valid_set_y, return_counts=True)
# u_test, c_test = np.unique(test_set_y, return_counts=True)
#
# print u_train
# print np.round(100 * c_train / np.sum(c_train), 2)
#
# print u_valid
# print np.round(100 * c_valid / np.sum(c_valid), 2)
#
# print u_test
# print np.round(100 * c_test / np.sum(c_test), 2)
train = (train_set_x, train_set_y)
valid = (valid_set_x, valid_set_y)
test = (test_set_x, test_set_y)
filenames = [np.array(filenames_train),
np.array(filenames_val),
np.array(filenames_test)]
print "load_data Done!"
print('Tot images:{} Train:{} Valid:{} Test:{}').format(
ntot, ntrain, nvalid, ntest)
"""
# Debug for types
print (train_set_x.dtype)
print (test_set_x.dtype)
print (valid_set_x.dtype)
print (train_set_y.dtype)
print (test_set_y.dtype)
print (valid_set_y.dtype)
print (train_set_x[0].dtype)
print (test_set_x[0].dtype)
print (valid_set_x[0].dtype)
print (train_set_y[0].dtype)
print (test_set_y[0].dtype)
print (valid_set_y[0].dtype)
"""
out_list = [train, valid, test, mean, std]
if with_filenames:
out_list.append(filenames)
if with_fullmasks:
out_list.append([])
return out_list
if __name__ == '__main__':
load_data(save=False)