-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_net.py
executable file
·155 lines (133 loc) · 5.42 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import nntplib
import numpy as np
from lib.config import cfg, args
from lib.networks.make_network import make_network
from lib.train import make_trainer, make_optimizer, make_lr_scheduler, make_recorder, set_lr_scheduler
from lib.datasets import make_data_loader
from lib.utils.net_utils import load_model, save_model, load_network, save_trained_config, load_pretrain
from lib.evaluators import make_evaluator
from lib.renderers import make_renderer
import torch.multiprocessing
import random
import torch
import torch.distributed as dist
import os
torch.autograd.set_detect_anomaly(True)
torch.manual_seed(cfg.random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(cfg.random_seed)
np.random.seed(cfg.random_seed)
torch.manual_seed(cfg.random_seed)
torch.cuda.manual_seed_all(cfg.random_seed)
def train(cfg, network):
trainer = make_trainer(cfg, network)
optimizer = make_optimizer(cfg, network)
scheduler = make_lr_scheduler(cfg, optimizer)
recorder = make_recorder(cfg)
evaluator = make_evaluator(cfg)
load_network(network, cfg.trained_model_dir_init, load_D = True, load_p = False)
begin_epoch = load_model(network,
optimizer,
scheduler,
recorder,
cfg.trained_model_dir,
resume=cfg.resume)
if begin_epoch == 0 and cfg.pretrain != '':
load_pretrain(network, cfg.pretrain)
for k in scheduler:
set_lr_scheduler(cfg, scheduler[k])
train_loader = make_data_loader(cfg,
is_train=True,
is_val=False,
is_distributed=cfg.distributed,
max_iter=cfg.ep_iter)
val_loader = make_data_loader(cfg,
is_train=False,
is_val=True,
# is_distributed=cfg.distributed,
max_iter= cfg.test.frame_num // cfg.test.batch_size)
# network = torch.nn.DataParallel(network, device_ids= [1,2,3,4])
for epoch in range(begin_epoch, cfg.train.epoch):
recorder.epoch = epoch
# Train
if cfg.distributed:
train_loader.batch_sampler.sampler.set_epoch(epoch)
trainer.train(epoch, train_loader, optimizer, recorder)
for k in scheduler:
scheduler[k].step()
if (epoch + 1) % cfg.eval_ep == 0 and cfg.local_rank == 0:
print(cfg.local_rank)
trainer.val(epoch, val_loader, evaluator, recorder)
if (epoch + 1) % cfg.save_latest_ep == 0:
# save_trained_config(cfg)
save_model(network, optimizer, scheduler, recorder, cfg.trained_model_dir, epoch, last=True)
if (epoch + 1) % cfg.save_ep == 0:
save_trained_config(cfg)
save_model(network, optimizer, scheduler, recorder, cfg.trained_model_dir, epoch)
return network
def test(cfg, network):
trainer = make_trainer(cfg, network)
val_loader = make_data_loader(cfg, is_train=False, is_val=True,max_iter= cfg.test.frame_num // cfg.test.batch_size)
evaluator = make_evaluator(cfg)
if cfg.test.ckpt_dir != '':
cfg.trained_model_dir = cfg.test.ckpt_dir
load_network(network, cfg.trained_model_dir_init, load_D = False)
epoch = load_network(network,
cfg.trained_model_dir,
resume=cfg.resume,
epoch=cfg.test.epoch)
trainer.val(epoch, val_loader, evaluator)
def render(cfg, network):
trainer = make_trainer(cfg, network)
render_loader = make_data_loader(cfg,
is_train=False,
is_val = False)
evaluator = make_evaluator(cfg)
renderer = make_renderer(cfg)
if cfg.render.ckpt_dir != '':
cfg.trained_model_dir = cfg.render.ckpt_dir
# load_network(network, cfg.trained_model_dir_init, load_D = True)
epoch = load_network(network,
cfg.trained_model_dir,
resume=cfg.resume,
epoch=cfg.test.epoch,
strict=False)
trainer.render(epoch, render_loader, renderer)
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def main():
# torch.set_deterministic(True)
if cfg.distributed:
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = str(len(cfg.gpus))
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
cfg.local_rank = int(os.environ['RANK']) % torch.cuda.device_count()
torch.cuda.set_device(cfg.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
print(f"[init] == local rank: {cfg.local_rank}, global rank: {os.environ['RANK']} ==")
synchronize()
cfg.world_size = dist.get_world_size()
else:
cfg.world_size = 1
network = make_network(cfg)
if args.test:
test(cfg, network)
elif args.render:
render(cfg, network)
else:
train(cfg, network)
if __name__ == "__main__":
main()