diff --git a/src/orthogonal-factorization-systems/function-classes.lagda.md b/src/orthogonal-factorization-systems/function-classes.lagda.md index 92c46b42509..56e789dbf99 100644 --- a/src/orthogonal-factorization-systems/function-classes.lagda.md +++ b/src/orthogonal-factorization-systems/function-classes.lagda.md @@ -179,6 +179,11 @@ module _ {l1 l2 : Level} (F : function-class l1 l1 l2) where + has-identity-maps-has-equivalences-function-class : + has-equivalences-function-class F → has-identity-maps-function-class F + has-identity-maps-has-equivalences-function-class has-equivs-F A = + has-equivs-F A A id is-equiv-id + htpy-has-identity-maps-function-class : has-identity-maps-function-class F → {X Y : UU l1} → (p : X = Y) → type-Prop (F (map-eq p)) @@ -186,18 +191,13 @@ module _ has-equivalence-has-identity-maps-function-class : has-identity-maps-function-class F → - {X Y : UU l1} → (e : X ≃ Y) → type-Prop (F (map-equiv e)) + {X Y : UU l1} (e : X ≃ Y) → type-Prop (F (map-equiv e)) has-equivalence-has-identity-maps-function-class has-ids-F {X} {Y} e = tr ( type-Prop ∘ F) ( ap pr1 (is-section-eq-equiv e)) ( htpy-has-identity-maps-function-class has-ids-F (eq-equiv X Y e)) - has-identity-maps-has-equivalences-function-class : - has-equivalences-function-class F → has-identity-maps-function-class F - has-identity-maps-has-equivalences-function-class has-equivs-F A = - has-equivs-F A A id is-equiv-id - has-equivalences-has-identity-maps-function-class : has-identity-maps-function-class F → has-equivalences-function-class F has-equivalences-has-identity-maps-function-class has-ids-F A B f is-equiv-f = diff --git a/src/orthogonal-factorization-systems/lifting-operations.lagda.md b/src/orthogonal-factorization-systems/lifting-operations.lagda.md index cf175564e59..be316d716d3 100644 --- a/src/orthogonal-factorization-systems/lifting-operations.lagda.md +++ b/src/orthogonal-factorization-systems/lifting-operations.lagda.md @@ -27,7 +27,6 @@ and `g`_ is a choice of lifting square for every commuting square A ------> B | | f| |g - | | V V X ------> Y. ``` @@ -36,20 +35,20 @@ Given a lifting operation we can say that `f` has a _left lifting structure_ with respect to `g` and that `g` has a _right lifting structure_ with respect to `f`. -## Warning - -This is the Curry–Howard interpretation of what is classically called _lifting -properties_. However, these are generally additional structure on the maps. For -the proof-irrelevant notion see +**Warning**: This is the Curry–Howard interpretation of what is classically +called _lifting properties_. However, these are generally additional structure +on the maps. For the proof-irrelevant notion see [mere lifting properties](orthogonal-factorization-systems.mere-lifting-properties.md). ## Definition -We define lifting operations to be sections of the pullback-hom. +We define lifting operations to be [sections](foundation-core.sections.md) of +the [pullback-hom](orthogonal-factorization-systems.pullback-hom.md). ```agda module _ - {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} + {l1 l2 l3 l4 : Level} + {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) where