diff --git a/src/category-theory/adjunctions-large-precategories.lagda.md b/src/category-theory/adjunctions-large-precategories.lagda.md index 83eef0322c..5dba854aac 100644 --- a/src/category-theory/adjunctions-large-precategories.lagda.md +++ b/src/category-theory/adjunctions-large-precategories.lagda.md @@ -65,10 +65,10 @@ module _ equiv-is-adjoint-pair-Large-Precategory : {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - ( type-hom-Large-Precategory C + ( hom-Large-Precategory C ( X) ( map-obj-functor-Large-Precategory G Y)) ≃ - ( type-hom-Large-Precategory D + ( hom-Large-Precategory D ( map-obj-functor-Large-Precategory F X) ( Y)) naturality-equiv-is-adjoint-pair-Large-Precategory : @@ -77,8 +77,8 @@ module _ { X2 : obj-Large-Precategory C l2} { Y1 : obj-Large-Precategory D l3} { Y2 : obj-Large-Precategory D l4} - ( f : type-hom-Large-Precategory C X2 X1) - ( g : type-hom-Large-Precategory D Y1 Y2) → + ( f : hom-Large-Precategory C X2 X1) + ( g : hom-Large-Precategory D Y1 Y2) → coherence-square-maps ( map-equiv (equiv-is-adjoint-pair-Large-Precategory X1 Y1)) ( λ h → @@ -98,8 +98,8 @@ module _ map-equiv-is-adjoint-pair-Large-Precategory : (H : is-adjoint-pair-Large-Precategory) {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - ( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) → - ( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) + ( hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) → + ( hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) map-equiv-is-adjoint-pair-Large-Precategory H X Y = map-equiv (equiv-is-adjoint-pair-Large-Precategory H X Y) @@ -108,8 +108,8 @@ module _ {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - ( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) ≃ - ( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) + ( hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) ≃ + ( hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) inv-equiv-is-adjoint-pair-Large-Precategory H X Y = inv-equiv (equiv-is-adjoint-pair-Large-Precategory H X Y) @@ -117,8 +117,8 @@ module _ (H : is-adjoint-pair-Large-Precategory) {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - ( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) → - ( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) + ( hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y) → + ( hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) map-inv-equiv-is-adjoint-pair-Large-Precategory H X Y = map-inv-equiv (equiv-is-adjoint-pair-Large-Precategory H X Y) @@ -129,8 +129,8 @@ module _ { X2 : obj-Large-Precategory C l2} { Y1 : obj-Large-Precategory D l3} { Y2 : obj-Large-Precategory D l4} - ( f : type-hom-Large-Precategory C X2 X1) - ( g : type-hom-Large-Precategory D Y1 Y2) → + ( f : hom-Large-Precategory C X2 X1) + ( g : hom-Large-Precategory D Y1 Y2) → coherence-square-maps ( map-inv-equiv-is-adjoint-pair-Large-Precategory H X1 Y1) ( λ h → @@ -227,8 +227,8 @@ module _ {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} → - type-hom-Large-Precategory C X Y → - type-hom-Large-Precategory D + hom-Large-Precategory C X Y → + hom-Large-Precategory D ( obj-left-adjoint-Adjunction-Large-Precategory FG X) ( obj-left-adjoint-Adjunction-Large-Precategory FG Y) hom-left-adjoint-Adjunction-Large-Precategory FG = @@ -261,8 +261,8 @@ module _ {l1 l2 : Level} {X : obj-Large-Precategory D l1} {Y : obj-Large-Precategory D l2} → - type-hom-Large-Precategory D X Y → - type-hom-Large-Precategory C + hom-Large-Precategory D X Y → + hom-Large-Precategory C ( obj-right-adjoint-Adjunction-Large-Precategory FG X) ( obj-right-adjoint-Adjunction-Large-Precategory FG Y) hom-right-adjoint-Adjunction-Large-Precategory FG = @@ -285,10 +285,10 @@ module _ {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - type-hom-Large-Precategory C + hom-Large-Precategory C ( X) ( obj-right-adjoint-Adjunction-Large-Precategory FG Y) ≃ - type-hom-Large-Precategory D + hom-Large-Precategory D ( obj-left-adjoint-Adjunction-Large-Precategory FG X) ( Y) equiv-is-adjoint-pair-Adjunction-Large-Precategory FG = @@ -300,10 +300,10 @@ module _ {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - type-hom-Large-Precategory C + hom-Large-Precategory C ( X) ( obj-right-adjoint-Adjunction-Large-Precategory FG Y) → - type-hom-Large-Precategory D + hom-Large-Precategory D ( obj-left-adjoint-Adjunction-Large-Precategory FG X) ( Y) map-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG = @@ -319,8 +319,8 @@ module _ {X2 : obj-Large-Precategory C l2} {Y1 : obj-Large-Precategory D l3} {Y2 : obj-Large-Precategory D l4} - (f : type-hom-Large-Precategory C X2 X1) - (g : type-hom-Large-Precategory D Y1 Y2) → + (f : hom-Large-Precategory C X2 X1) + (g : hom-Large-Precategory D Y1 Y2) → coherence-square-maps ( map-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X1 Y1) ( λ h → @@ -343,10 +343,10 @@ module _ {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - ( type-hom-Large-Precategory D + ( hom-Large-Precategory D ( obj-left-adjoint-Adjunction-Large-Precategory FG X) ( Y)) ≃ - ( type-hom-Large-Precategory C + ( hom-Large-Precategory C ( X) ( obj-right-adjoint-Adjunction-Large-Precategory FG Y)) inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X Y = @@ -357,10 +357,10 @@ module _ {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory D l2) → - type-hom-Large-Precategory D + hom-Large-Precategory D ( obj-left-adjoint-Adjunction-Large-Precategory FG X) ( Y) → - type-hom-Large-Precategory C + hom-Large-Precategory C ( X) ( obj-right-adjoint-Adjunction-Large-Precategory FG Y) map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X Y = @@ -373,8 +373,8 @@ module _ {X2 : obj-Large-Precategory C l2} {Y1 : obj-Large-Precategory D l3} {Y2 : obj-Large-Precategory D l4} - (f : type-hom-Large-Precategory C X2 X1) - (g : type-hom-Large-Precategory D Y1 Y2) → + (f : hom-Large-Precategory C X2 X1) + (g : hom-Large-Precategory D Y1 Y2) → coherence-square-maps ( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory FG X1 Y1) ( λ h → @@ -489,7 +489,7 @@ module _ where η : {l : Level} (X : obj-Large-Precategory C l) → - type-hom-Large-Precategory C X + hom-Large-Precategory C X ( obj-right-adjoint-Adjunction-Large-Precategory C D FG ( obj-left-adjoint-Adjunction-Large-Precategory C D FG X)) η = @@ -576,7 +576,7 @@ Given an adjoint pair `F ⊣ G`, we can construct a natural transformation where ε : {l : Level} (Y : obj-Large-Precategory D l) → - type-hom-Large-Precategory D + hom-Large-Precategory D ( obj-left-adjoint-Adjunction-Large-Precategory C D FG ( obj-right-adjoint-Adjunction-Large-Precategory C D FG Y)) ( Y) diff --git a/src/category-theory/anafunctors-categories.lagda.md b/src/category-theory/anafunctors-categories.lagda.md index 4cc6b74fba..447086f3eb 100644 --- a/src/category-theory/anafunctors-categories.lagda.md +++ b/src/category-theory/anafunctors-categories.lagda.md @@ -48,7 +48,7 @@ module _ (X Y : obj-Category C) (U : obj-Category D) (u : object-anafunctor-Category X U) (V : obj-Category D) (v : object-anafunctor-Category Y V) → - type-hom-Category C X Y → type-hom-Category D U V + hom-Category C X Y → hom-Category D U V hom-anafunctor-Category = hom-anafunctor-Precategory ( precategory-Category C) diff --git a/src/category-theory/anafunctors-precategories.lagda.md b/src/category-theory/anafunctors-precategories.lagda.md index 929d1577f4..b92eb944ba 100644 --- a/src/category-theory/anafunctors-precategories.lagda.md +++ b/src/category-theory/anafunctors-precategories.lagda.md @@ -39,7 +39,7 @@ anafunctor-Precategory l C D = Σ ( ( X Y : obj-Precategory C) ( U : obj-Precategory D) (u : F₀ X U) → ( V : obj-Precategory D) (v : F₀ Y V) → - ( f : type-hom-Precategory C X Y) → type-hom-Precategory D U V) + ( f : hom-Precategory C X Y) → hom-Precategory D U V) ( λ F₁ → ( ( X : obj-Precategory C) → type-trunc-Prop (Σ (obj-Precategory D) (F₀ X))) × @@ -50,8 +50,8 @@ anafunctor-Precategory l C D = ( U : obj-Precategory D) (u : F₀ X U) ( V : obj-Precategory D) (v : F₀ Y V) ( W : obj-Precategory D) (w : F₀ Z W) → - ( g : type-hom-Precategory C Y Z) - ( f : type-hom-Precategory C X Y) → + ( g : hom-Precategory C Y Z) + ( f : hom-Precategory C X Y) → ( F₁ X Z U u W w (comp-hom-Precategory C g f)) = ( comp-hom-Precategory D ( F₁ Y Z V v W w g) @@ -69,7 +69,7 @@ module _ (X Y : obj-Precategory C) (U : obj-Precategory D) (u : object-anafunctor-Precategory X U) (V : obj-Precategory D) (v : object-anafunctor-Precategory Y V) → - type-hom-Precategory C X Y → type-hom-Precategory D U V + hom-Precategory C X Y → hom-Precategory D U V hom-anafunctor-Precategory = pr1 (pr2 F) ``` diff --git a/src/category-theory/categories.lagda.md b/src/category-theory/categories.lagda.md index 934d145fc2..2e5021b45e 100644 --- a/src/category-theory/categories.lagda.md +++ b/src/category-theory/categories.lagda.md @@ -61,54 +61,54 @@ module _ obj-Category : UU l1 obj-Category = obj-Precategory precategory-Category - hom-Category : obj-Category → obj-Category → Set l2 - hom-Category = hom-Precategory precategory-Category + hom-set-Category : obj-Category → obj-Category → Set l2 + hom-set-Category = hom-set-Precategory precategory-Category - type-hom-Category : obj-Category → obj-Category → UU l2 - type-hom-Category = type-hom-Precategory precategory-Category + hom-Category : obj-Category → obj-Category → UU l2 + hom-Category = hom-Precategory precategory-Category - is-set-type-hom-Category : - (x y : obj-Category) → is-set (type-hom-Category x y) - is-set-type-hom-Category = is-set-type-hom-Precategory precategory-Category + is-set-hom-Category : + (x y : obj-Category) → is-set (hom-Category x y) + is-set-hom-Category = is-set-hom-Precategory precategory-Category comp-hom-Category : {x y z : obj-Category} → - type-hom-Category y z → type-hom-Category x y → type-hom-Category x z + hom-Category y z → hom-Category x y → hom-Category x z comp-hom-Category = comp-hom-Precategory precategory-Category associative-comp-hom-Category : {x y z w : obj-Category} - (h : type-hom-Category z w) - (g : type-hom-Category y z) - (f : type-hom-Category x y) → + (h : hom-Category z w) + (g : hom-Category y z) + (f : hom-Category x y) → comp-hom-Category (comp-hom-Category h g) f = comp-hom-Category h (comp-hom-Category g f) associative-comp-hom-Category = associative-comp-hom-Precategory precategory-Category associative-composition-structure-Category : - associative-composition-structure-Set hom-Category + associative-composition-structure-Set hom-set-Category associative-composition-structure-Category = associative-composition-structure-Precategory precategory-Category - id-hom-Category : {x : obj-Category} → type-hom-Category x x + id-hom-Category : {x : obj-Category} → hom-Category x x id-hom-Category = id-hom-Precategory precategory-Category left-unit-law-comp-hom-Category : - {x y : obj-Category} (f : type-hom-Category x y) → + {x y : obj-Category} (f : hom-Category x y) → comp-hom-Category id-hom-Category f = f left-unit-law-comp-hom-Category = left-unit-law-comp-hom-Precategory precategory-Category right-unit-law-comp-hom-Category : - {x y : obj-Category} (f : type-hom-Category x y) → + {x y : obj-Category} (f : hom-Category x y) → comp-hom-Category f id-hom-Category = f right-unit-law-comp-hom-Category = right-unit-law-comp-hom-Precategory precategory-Category is-unital-composition-structure-Category : is-unital-composition-structure-Set - hom-Category + hom-set-Category associative-composition-structure-Category is-unital-composition-structure-Category = is-unital-composition-structure-Precategory precategory-Category @@ -123,8 +123,8 @@ module _ ```agda precomp-hom-Category : {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - (f : type-hom-Category C x y) (z : obj-Category C) → - type-hom-Category C y z → type-hom-Category C x z + (f : hom-Category C x y) (z : obj-Category C) → + hom-Category C y z → hom-Category C x z precomp-hom-Category C = precomp-hom-Precategory (precategory-Category C) ``` @@ -133,8 +133,8 @@ precomp-hom-Category C = precomp-hom-Precategory (precategory-Category C) ```agda postcomp-hom-Category : {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - (f : type-hom-Category C x y) (z : obj-Category C) → - type-hom-Category C z x → type-hom-Category C z y + (f : hom-Category C x y) (z : obj-Category C) → + hom-Category C z x → hom-Category C z y postcomp-hom-Category C = postcomp-hom-Precategory (precategory-Category C) ``` diff --git a/src/category-theory/category-of-functors.lagda.md b/src/category-theory/category-of-functors.lagda.md index 35b9aad60b..d26e39ad81 100644 --- a/src/category-theory/category-of-functors.lagda.md +++ b/src/category-theory/category-of-functors.lagda.md @@ -48,21 +48,21 @@ module _ ( precategory-Category C) ( precategory-Category D) - is-category-functor-category-Precategory : - is-category-Precategory functor-category-Precategory - is-category-functor-category-Precategory F G = - is-equiv-htpy-equiv - ( equiv-iso-functor-natural-isomorphism-Precategory - ( precategory-Category C) - ( precategory-Category D) - ( F) - ( G) ∘e - {! !} ∘e - ( extensionality-functor-Category' C D F G)) - {! !} + -- is-category-functor-category-Precategory : + -- is-category-Precategory functor-category-Precategory + -- is-category-functor-category-Precategory F G = + -- is-equiv-htpy-equiv + -- ( equiv-iso-functor-natural-isomorphism-Precategory + -- ( precategory-Category C) + -- ( precategory-Category D) + -- ( F) + -- ( G) ∘e + -- {! !} ∘e + -- ( extensionality-functor-Category' C D F G)) + -- {! !} - functor-category-Category : - Category (l1 ⊔ l2 ⊔ l3 ⊔ l4) (l1 ⊔ l2 ⊔ l4) - pr1 functor-category-Category = functor-category-Precategory - pr2 functor-category-Category = is-category-functor-category-Precategory + -- functor-category-Category : + -- Category (l1 ⊔ l2 ⊔ l3 ⊔ l4) (l1 ⊔ l2 ⊔ l4) + -- pr1 functor-category-Category = functor-category-Precategory + -- pr2 functor-category-Category = is-category-functor-category-Precategory ``` diff --git a/src/category-theory/coproducts-in-precategories.lagda.md b/src/category-theory/coproducts-in-precategories.lagda.md index 94c6e6b8e7..1eb5e2e64e 100644 --- a/src/category-theory/coproducts-in-precategories.lagda.md +++ b/src/category-theory/coproducts-in-precategories.lagda.md @@ -33,13 +33,13 @@ module _ is-coproduct-Precategory : (x y p : obj-Precategory C) → - type-hom-Precategory C x p → type-hom-Precategory C y p → UU (l1 ⊔ l2) + hom-Precategory C x p → hom-Precategory C y p → UU (l1 ⊔ l2) is-coproduct-Precategory x y p l r = (z : obj-Precategory C) - (f : type-hom-Precategory C x z) → - (g : type-hom-Precategory C y z) → + (f : hom-Precategory C x z) → + (g : hom-Precategory C y z) → ∃! - ( type-hom-Precategory C p z) + ( hom-Precategory C p z) ( λ h → ( comp-hom-Precategory C h l = f) × ( comp-hom-Precategory C h r = g)) @@ -48,9 +48,9 @@ module _ coproduct-Precategory x y = Σ ( obj-Precategory C) ( λ p → - Σ ( type-hom-Precategory C x p) + Σ ( hom-Precategory C x p) ( λ l → - Σ (type-hom-Precategory C y p) + Σ (hom-Precategory C y p) ( is-coproduct-Precategory x y p l))) has-all-binary-coproducts : UU (l1 ⊔ l2) @@ -67,23 +67,23 @@ module _ inl-coproduct-Precategory : (x y : obj-Precategory C) → - type-hom-Precategory C x (object-coproduct-Precategory x y) + hom-Precategory C x (object-coproduct-Precategory x y) inl-coproduct-Precategory x y = pr1 (pr2 (t x y)) inr-coproduct-Precategory : (x y : obj-Precategory C) → - type-hom-Precategory C y (object-coproduct-Precategory x y) + hom-Precategory C y (object-coproduct-Precategory x y) inr-coproduct-Precategory x y = pr1 (pr2 (pr2 (t x y))) module _ (x y z : obj-Precategory C) - (f : type-hom-Precategory C x z) - (g : type-hom-Precategory C y z) + (f : hom-Precategory C x z) + (g : hom-Precategory C y z) where morphism-out-of-coproduct-Precategory : - type-hom-Precategory C (object-coproduct-Precategory x y) z + hom-Precategory C (object-coproduct-Precategory x y) z morphism-out-of-coproduct-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g)) @@ -104,7 +104,7 @@ module _ pr2 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) is-unique-morphism-out-of-coproduct-Precategory : - (h : type-hom-Precategory C (object-coproduct-Precategory x y) z) → + (h : hom-Precategory C (object-coproduct-Precategory x y) z) → comp-hom-Precategory C h (inl-coproduct-Precategory x y) = f → comp-hom-Precategory C h (inr-coproduct-Precategory x y) = g → morphism-out-of-coproduct-Precategory = h @@ -114,8 +114,8 @@ module _ module _ {l1 l2 : Level} (C : Precategory l1 l2) (x y p : obj-Precategory C) - (l : type-hom-Precategory C x p) - (r : type-hom-Precategory C y p) + (l : hom-Precategory C x p) + (r : hom-Precategory C y p) where is-prop-is-coproduct-Precategory : @@ -144,12 +144,12 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-coproducts C) {x₁ x₂ y₁ y₂ : obj-Precategory C} - (f : type-hom-Precategory C x₁ y₁) - (g : type-hom-Precategory C x₂ y₂) + (f : hom-Precategory C x₁ y₁) + (g : hom-Precategory C x₂ y₂) where map-coproduct-Precategory : - type-hom-Precategory C + hom-Precategory C (object-coproduct-Precategory C t x₁ x₂) (object-coproduct-Precategory C t y₁ y₂) map-coproduct-Precategory = diff --git a/src/category-theory/dependent-products-of-categories.lagda.md b/src/category-theory/dependent-products-of-categories.lagda.md index f0141d233e..fc14204ebe 100644 --- a/src/category-theory/dependent-products-of-categories.lagda.md +++ b/src/category-theory/dependent-products-of-categories.lagda.md @@ -61,24 +61,24 @@ module _ hom-Π-Category : obj-Π-Category → obj-Π-Category → Set (l1 ⊔ l3) - hom-Π-Category = hom-Category Π-Category + hom-Π-Category = hom-set-Category Π-Category - type-hom-Π-Category : + hom-Π-Category : obj-Π-Category → obj-Π-Category → UU (l1 ⊔ l3) - type-hom-Π-Category = type-hom-Category Π-Category + hom-Π-Category = hom-Category Π-Category comp-hom-Π-Category : {x y z : obj-Π-Category} → - type-hom-Π-Category y z → - type-hom-Π-Category x y → - type-hom-Π-Category x z + hom-Π-Category y z → + hom-Π-Category x y → + hom-Π-Category x z comp-hom-Π-Category = comp-hom-Category Π-Category associative-comp-hom-Π-Category : {x y z w : obj-Π-Category} - (h : type-hom-Π-Category z w) - (g : type-hom-Π-Category y z) - (f : type-hom-Π-Category x y) → + (h : hom-Π-Category z w) + (g : hom-Π-Category y z) + (f : hom-Π-Category x y) → ( comp-hom-Π-Category (comp-hom-Π-Category h g) f) = ( comp-hom-Π-Category h (comp-hom-Π-Category g f)) associative-comp-hom-Π-Category = @@ -90,18 +90,18 @@ module _ associative-composition-structure-Category Π-Category id-hom-Π-Category : - {x : obj-Π-Category} → type-hom-Π-Category x x + {x : obj-Π-Category} → hom-Π-Category x x id-hom-Π-Category = id-hom-Category Π-Category left-unit-law-comp-hom-Π-Category : {x y : obj-Π-Category} - (f : type-hom-Π-Category x y) → + (f : hom-Π-Category x y) → comp-hom-Π-Category id-hom-Π-Category f = f left-unit-law-comp-hom-Π-Category = left-unit-law-comp-hom-Category Π-Category right-unit-law-comp-hom-Π-Category : - {x y : obj-Π-Category} (f : type-hom-Π-Category x y) → + {x y : obj-Π-Category} (f : hom-Π-Category x y) → comp-hom-Π-Category f id-hom-Π-Category = f right-unit-law-comp-hom-Π-Category = right-unit-law-comp-hom-Category Π-Category @@ -128,7 +128,7 @@ module _ where is-fiberwise-iso-is-iso-Π-Category : - (f : type-hom-Π-Category I C x y) → + (f : hom-Π-Category I C x y) → is-iso-hom-Category (Π-Category I C) f → (i : I) → is-iso-hom-Category (C i) (f i) is-fiberwise-iso-is-iso-Π-Category = @@ -141,7 +141,7 @@ module _ fiberwise-iso-iso-Π-Precategory I (precategory-Category ∘ C) is-iso-Π-is-fiberwise-iso-Category : - (f : type-hom-Π-Category I C x y) → + (f : hom-Π-Category I C x y) → ((i : I) → is-iso-hom-Category (C i) (f i)) → is-iso-hom-Category (Π-Category I C) f is-iso-Π-is-fiberwise-iso-Category = @@ -154,26 +154,26 @@ module _ iso-Π-fiberwise-iso-Precategory I (precategory-Category ∘ C) is-equiv-is-fiberwise-iso-is-iso-Π-Category : - (f : type-hom-Π-Category I C x y) → + (f : hom-Π-Category I C x y) → is-equiv (is-fiberwise-iso-is-iso-Π-Category f) is-equiv-is-fiberwise-iso-is-iso-Π-Category = is-equiv-is-fiberwise-iso-is-iso-Π-Precategory I (precategory-Category ∘ C) equiv-is-fiberwise-iso-is-iso-Π-Category : - (f : type-hom-Π-Category I C x y) → + (f : hom-Π-Category I C x y) → ( is-iso-hom-Category (Π-Category I C) f) ≃ ( (i : I) → is-iso-hom-Category (C i) (f i)) equiv-is-fiberwise-iso-is-iso-Π-Category = equiv-is-fiberwise-iso-is-iso-Π-Precategory I (precategory-Category ∘ C) is-equiv-is-iso-Π-is-fiberwise-iso-Category : - (f : type-hom-Π-Category I C x y) → + (f : hom-Π-Category I C x y) → is-equiv (is-iso-Π-is-fiberwise-iso-Category f) is-equiv-is-iso-Π-is-fiberwise-iso-Category = is-equiv-is-iso-Π-is-fiberwise-iso-Precategory I (precategory-Category ∘ C) equiv-is-iso-Π-is-fiberwise-iso-Category : - ( f : type-hom-Π-Category I C x y) → + ( f : hom-Π-Category I C x y) → ( (i : I) → is-iso-hom-Category (C i) (f i)) ≃ ( is-iso-hom-Category (Π-Category I C) f) equiv-is-iso-Π-is-fiberwise-iso-Category = diff --git a/src/category-theory/dependent-products-of-precategories.lagda.md b/src/category-theory/dependent-products-of-precategories.lagda.md index 3886757cc8..2b9532eefa 100644 --- a/src/category-theory/dependent-products-of-precategories.lagda.md +++ b/src/category-theory/dependent-products-of-precategories.lagda.md @@ -40,23 +40,23 @@ module _ obj-Π-Precategory = (i : I) → obj-Precategory (C i) hom-Π-Precategory : obj-Π-Precategory → obj-Π-Precategory → Set (l1 ⊔ l3) - hom-Π-Precategory x y = Π-Set' I (λ i → hom-Precategory (C i) (x i) (y i)) + hom-Π-Precategory x y = Π-Set' I (λ i → hom-set-Precategory (C i) (x i) (y i)) - type-hom-Π-Precategory : obj-Π-Precategory → obj-Π-Precategory → UU (l1 ⊔ l3) - type-hom-Π-Precategory x y = type-Set (hom-Π-Precategory x y) + hom-Π-Precategory : obj-Π-Precategory → obj-Π-Precategory → UU (l1 ⊔ l3) + hom-Π-Precategory x y = type-Set (hom-Π-Precategory x y) comp-hom-Π-Precategory : {x y z : obj-Π-Precategory} → - type-hom-Π-Precategory y z → - type-hom-Π-Precategory x y → - type-hom-Π-Precategory x z + hom-Π-Precategory y z → + hom-Π-Precategory x y → + hom-Π-Precategory x z comp-hom-Π-Precategory f g i = comp-hom-Precategory (C i) (f i) (g i) associative-comp-hom-Π-Precategory : {x y z w : obj-Π-Precategory} - (h : type-hom-Π-Precategory z w) - (g : type-hom-Π-Precategory y z) - (f : type-hom-Π-Precategory x y) → + (h : hom-Π-Precategory z w) + (g : hom-Π-Precategory y z) + (f : hom-Π-Precategory x y) → ( comp-hom-Π-Precategory (comp-hom-Π-Precategory h g) f) = ( comp-hom-Π-Precategory h (comp-hom-Π-Precategory g f)) associative-comp-hom-Π-Precategory h g f = @@ -68,18 +68,18 @@ module _ pr2 associative-composition-structure-Π-Precategory = associative-comp-hom-Π-Precategory - id-hom-Π-Precategory : {x : obj-Π-Precategory} → type-hom-Π-Precategory x x + id-hom-Π-Precategory : {x : obj-Π-Precategory} → hom-Π-Precategory x x id-hom-Π-Precategory i = id-hom-Precategory (C i) left-unit-law-comp-hom-Π-Precategory : {x y : obj-Π-Precategory} - (f : type-hom-Π-Precategory x y) → + (f : hom-Π-Precategory x y) → comp-hom-Π-Precategory id-hom-Π-Precategory f = f left-unit-law-comp-hom-Π-Precategory f = eq-htpy (λ i → left-unit-law-comp-hom-Precategory (C i) (f i)) right-unit-law-comp-hom-Π-Precategory : - {x y : obj-Π-Precategory} (f : type-hom-Π-Precategory x y) → + {x y : obj-Π-Precategory} (f : hom-Π-Precategory x y) → comp-hom-Π-Precategory f id-hom-Π-Precategory = f right-unit-law-comp-hom-Π-Precategory f = eq-htpy (λ i → right-unit-law-comp-hom-Precategory (C i) (f i)) @@ -111,7 +111,7 @@ module _ where is-fiberwise-iso-is-iso-Π-Precategory : - (f : type-hom-Π-Precategory I C x y) → + (f : hom-Π-Precategory I C x y) → is-iso-hom-Precategory (Π-Precategory I C) f → (i : I) → is-iso-hom-Precategory (C i) (f i) pr1 (is-fiberwise-iso-is-iso-Π-Precategory f is-iso-f i) = @@ -139,7 +139,7 @@ module _ ( i) is-iso-Π-is-fiberwise-iso-Precategory : - (f : type-hom-Π-Precategory I C x y) → + (f : hom-Π-Precategory I C x y) → ((i : I) → is-iso-hom-Precategory (C i) (f i)) → is-iso-hom-Precategory (Π-Precategory I C) f pr1 (is-iso-Π-is-fiberwise-iso-Precategory f is-fiberwise-iso-f) i = @@ -165,7 +165,7 @@ module _ ( λ i → is-iso-hom-iso-Precategory (C i) (e i)) is-equiv-is-fiberwise-iso-is-iso-Π-Precategory : - (f : type-hom-Π-Precategory I C x y) → + (f : hom-Π-Precategory I C x y) → is-equiv (is-fiberwise-iso-is-iso-Π-Precategory f) is-equiv-is-fiberwise-iso-is-iso-Π-Precategory f = is-equiv-is-prop @@ -174,7 +174,7 @@ module _ ( is-iso-Π-is-fiberwise-iso-Precategory f) equiv-is-fiberwise-iso-is-iso-Π-Precategory : - (f : type-hom-Π-Precategory I C x y) → + (f : hom-Π-Precategory I C x y) → ( is-iso-hom-Precategory (Π-Precategory I C) f) ≃ ( (i : I) → is-iso-hom-Precategory (C i) (f i)) pr1 (equiv-is-fiberwise-iso-is-iso-Π-Precategory f) = @@ -183,7 +183,7 @@ module _ is-equiv-is-fiberwise-iso-is-iso-Π-Precategory f is-equiv-is-iso-Π-is-fiberwise-iso-Precategory : - (f : type-hom-Π-Precategory I C x y) → + (f : hom-Π-Precategory I C x y) → is-equiv (is-iso-Π-is-fiberwise-iso-Precategory f) is-equiv-is-iso-Π-is-fiberwise-iso-Precategory f = is-equiv-is-prop @@ -192,7 +192,7 @@ module _ ( is-fiberwise-iso-is-iso-Π-Precategory f) equiv-is-iso-Π-is-fiberwise-iso-Precategory : - ( f : type-hom-Π-Precategory I C x y) → + ( f : hom-Π-Precategory I C x y) → ( (i : I) → is-iso-hom-Precategory (C i) (f i)) ≃ ( is-iso-hom-Precategory (Π-Precategory I C) f) pr1 (equiv-is-iso-Π-is-fiberwise-iso-Precategory f) = diff --git a/src/category-theory/endomorphisms-in-precategories.lagda.md b/src/category-theory/endomorphisms-in-precategories.lagda.md index 5af144e13d..75cac02bde 100644 --- a/src/category-theory/endomorphisms-in-precategories.lagda.md +++ b/src/category-theory/endomorphisms-in-precategories.lagda.md @@ -30,7 +30,7 @@ module _ where type-endo-Precategory : UU l2 - type-endo-Precategory = type-hom-Precategory C X X + type-endo-Precategory = hom-Precategory C X X comp-endo-Precategory : type-endo-Precategory → type-endo-Precategory → type-endo-Precategory @@ -56,7 +56,7 @@ module _ right-unit-law-comp-endo-Precategory = right-unit-law-comp-hom-Precategory C set-endo-Precategory : Set l2 - set-endo-Precategory = hom-Precategory C X X + set-endo-Precategory = hom-set-Precategory C X X semigroup-endo-Precategory : Semigroup l2 pr1 semigroup-endo-Precategory = set-endo-Precategory diff --git a/src/category-theory/epimorphisms-in-large-precategories.lagda.md b/src/category-theory/epimorphisms-in-large-precategories.lagda.md index 6766641d4f..a9fed314c8 100644 --- a/src/category-theory/epimorphisms-in-large-precategories.lagda.md +++ b/src/category-theory/epimorphisms-in-large-precategories.lagda.md @@ -34,7 +34,7 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} (l3 : Level) (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) - (f : type-hom-Large-Precategory C X Y) + (f : hom-Large-Precategory C X Y) where is-epi-Large-Precategory-Prop : Prop (α l3 ⊔ β l1 l3 ⊔ β l2 l3) @@ -95,10 +95,10 @@ module _ ( right-unit-law-comp-hom-Large-Precategory C h))))))) ( λ p → eq-is-prop - ( is-set-type-hom-Large-Precategory C X Z + ( is-set-hom-Large-Precategory C X Z ( comp-hom-Large-Precategory C g ( hom-iso-Large-Precategory C f)) ( comp-hom-Large-Precategory C h ( hom-iso-Large-Precategory C f)))) - ( λ p → eq-is-prop (is-set-type-hom-Large-Precategory C Y Z g h)) + ( λ p → eq-is-prop (is-set-hom-Large-Precategory C Y Z g h)) ``` diff --git a/src/category-theory/exponential-objects-precategories.lagda.md b/src/category-theory/exponential-objects-precategories.lagda.md index 0c43763464..80916eb1d8 100644 --- a/src/category-theory/exponential-objects-precategories.lagda.md +++ b/src/category-theory/exponential-objects-precategories.lagda.md @@ -42,13 +42,13 @@ module _ is-exponential-Precategory : (x y e : obj-Precategory C) → - type-hom-Precategory C (object-product-Precategory C p e x) y → + hom-Precategory C (object-product-Precategory C p e x) y → UU (l1 ⊔ l2) is-exponential-Precategory x y e ev = (z : obj-Precategory C) - (f : type-hom-Precategory C (object-product-Precategory C p z x) y) → + (f : hom-Precategory C (object-product-Precategory C p z x) y) → ∃! - ( type-hom-Precategory C z e) + ( hom-Precategory C z e) ( λ g → comp-hom-Precategory C ev ( map-product-Precategory C p g (id-hom-Precategory C)) = @@ -58,7 +58,7 @@ module _ obj-Precategory C → obj-Precategory C → UU (l1 ⊔ l2) exponential-Precategory x y = Σ (obj-Precategory C) (λ e → - Σ (type-hom-Precategory C (object-product-Precategory C p e x) y) λ ev → + Σ (hom-Precategory C (object-product-Precategory C p e x) y) λ ev → is-exponential-Precategory x y e ev) has-all-exponentials-Precategory : UU (l1 ⊔ l2) @@ -76,18 +76,18 @@ module _ object-exponential-Precategory = pr1 (t x y) eval-exponential-Precategory : - type-hom-Precategory C + hom-Precategory C ( object-product-Precategory C p object-exponential-Precategory x) ( y) eval-exponential-Precategory = pr1 (pr2 (t x y)) module _ (z : obj-Precategory C) - (f : type-hom-Precategory C (object-product-Precategory C p z x) y) + (f : hom-Precategory C (object-product-Precategory C p z x) y) where morphism-into-exponential-Precategory : - type-hom-Precategory C z object-exponential-Precategory + hom-Precategory C z object-exponential-Precategory morphism-into-exponential-Precategory = pr1 (pr1 (pr2 (pr2 (t x y)) z f)) morphism-into-exponential-Precategory-comm : @@ -101,7 +101,7 @@ module _ pr2 (pr1 (pr2 (pr2 (t x y)) z f)) is-unique-morphism-into-exponential-Precategory : - ( g : type-hom-Precategory C z object-exponential-Precategory) → + ( g : hom-Precategory C z object-exponential-Precategory) → ( comp-hom-Precategory C ( eval-exponential-Precategory) ( map-product-Precategory C p g (id-hom-Precategory C)) = f) → diff --git a/src/category-theory/function-categories.lagda.md b/src/category-theory/function-categories.lagda.md index 718cc18fdc..0ad3435852 100644 --- a/src/category-theory/function-categories.lagda.md +++ b/src/category-theory/function-categories.lagda.md @@ -49,24 +49,24 @@ module _ hom-function-Category : obj-function-Category → obj-function-Category → Set (l1 ⊔ l3) - hom-function-Category = hom-Category function-Category + hom-function-Category = hom-set-Category function-Category - type-hom-function-Category : + hom-function-Category : obj-function-Category → obj-function-Category → UU (l1 ⊔ l3) - type-hom-function-Category = type-hom-Category function-Category + hom-function-Category = hom-Category function-Category comp-hom-function-Category : {x y z : obj-function-Category} → - type-hom-function-Category y z → - type-hom-function-Category x y → - type-hom-function-Category x z + hom-function-Category y z → + hom-function-Category x y → + hom-function-Category x z comp-hom-function-Category = comp-hom-Category function-Category associative-comp-hom-function-Category : {x y z w : obj-function-Category} - (h : type-hom-function-Category z w) - (g : type-hom-function-Category y z) - (f : type-hom-function-Category x y) → + (h : hom-function-Category z w) + (g : hom-function-Category y z) + (f : hom-function-Category x y) → ( comp-hom-function-Category (comp-hom-function-Category h g) f) = ( comp-hom-function-Category h (comp-hom-function-Category g f)) associative-comp-hom-function-Category = @@ -78,18 +78,18 @@ module _ associative-composition-structure-Category function-Category id-hom-function-Category : - {x : obj-function-Category} → type-hom-function-Category x x + {x : obj-function-Category} → hom-function-Category x x id-hom-function-Category = id-hom-Category function-Category left-unit-law-comp-hom-function-Category : {x y : obj-function-Category} - (f : type-hom-function-Category x y) → + (f : hom-function-Category x y) → comp-hom-function-Category id-hom-function-Category f = f left-unit-law-comp-hom-function-Category = left-unit-law-comp-hom-Category function-Category right-unit-law-comp-hom-function-Category : - {x y : obj-function-Category} (f : type-hom-function-Category x y) → + {x y : obj-function-Category} (f : hom-function-Category x y) → comp-hom-function-Category f id-hom-function-Category = f right-unit-law-comp-hom-function-Category = right-unit-law-comp-hom-Category function-Category @@ -117,7 +117,7 @@ module _ where is-fiberwise-iso-is-iso-function-Category : - (f : type-hom-function-Category I C x y) → + (f : hom-function-Category I C x y) → is-iso-hom-Category (function-Category I C) f → (i : I) → is-iso-hom-Category C (f i) is-fiberwise-iso-is-iso-function-Category = @@ -130,7 +130,7 @@ module _ fiberwise-iso-iso-Π-Category I (λ _ → C) is-iso-function-is-fiberwise-iso-Category : - (f : type-hom-function-Category I C x y) → + (f : hom-function-Category I C x y) → ((i : I) → is-iso-hom-Category C (f i)) → is-iso-hom-Category (function-Category I C) f is-iso-function-is-fiberwise-iso-Category = @@ -143,26 +143,26 @@ module _ iso-Π-fiberwise-iso-Category I (λ _ → C) is-equiv-is-fiberwise-iso-is-iso-function-Category : - (f : type-hom-function-Category I C x y) → + (f : hom-function-Category I C x y) → is-equiv (is-fiberwise-iso-is-iso-function-Category f) is-equiv-is-fiberwise-iso-is-iso-function-Category = is-equiv-is-fiberwise-iso-is-iso-Π-Category I (λ _ → C) equiv-is-fiberwise-iso-is-iso-function-Category : - (f : type-hom-function-Category I C x y) → + (f : hom-function-Category I C x y) → ( is-iso-hom-Category (function-Category I C) f) ≃ ( (i : I) → is-iso-hom-Category C (f i)) equiv-is-fiberwise-iso-is-iso-function-Category = equiv-is-fiberwise-iso-is-iso-Π-Category I (λ _ → C) is-equiv-is-iso-function-is-fiberwise-iso-Category : - (f : type-hom-function-Category I C x y) → + (f : hom-function-Category I C x y) → is-equiv (is-iso-function-is-fiberwise-iso-Category f) is-equiv-is-iso-function-is-fiberwise-iso-Category = is-equiv-is-iso-Π-is-fiberwise-iso-Category I (λ _ → C) equiv-is-iso-function-is-fiberwise-iso-Category : - ( f : type-hom-function-Category I C x y) → + ( f : hom-function-Category I C x y) → ( (i : I) → is-iso-hom-Category C (f i)) ≃ ( is-iso-hom-Category (function-Category I C) f) equiv-is-iso-function-is-fiberwise-iso-Category = diff --git a/src/category-theory/function-precategories.lagda.md b/src/category-theory/function-precategories.lagda.md index 232649d346..c6dc631914 100644 --- a/src/category-theory/function-precategories.lagda.md +++ b/src/category-theory/function-precategories.lagda.md @@ -41,24 +41,24 @@ module _ hom-function-Precategory : obj-function-Precategory → obj-function-Precategory → Set (l1 ⊔ l3) - hom-function-Precategory = hom-Precategory function-Precategory + hom-function-Precategory = hom-set-Precategory function-Precategory - type-hom-function-Precategory : + hom-function-Precategory : obj-function-Precategory → obj-function-Precategory → UU (l1 ⊔ l3) - type-hom-function-Precategory = type-hom-Precategory function-Precategory + hom-function-Precategory = hom-Precategory function-Precategory comp-hom-function-Precategory : {x y z : obj-function-Precategory} → - type-hom-function-Precategory y z → - type-hom-function-Precategory x y → - type-hom-function-Precategory x z + hom-function-Precategory y z → + hom-function-Precategory x y → + hom-function-Precategory x z comp-hom-function-Precategory = comp-hom-Precategory function-Precategory associative-comp-hom-function-Precategory : {x y z w : obj-function-Precategory} - (h : type-hom-function-Precategory z w) - (g : type-hom-function-Precategory y z) - (f : type-hom-function-Precategory x y) → + (h : hom-function-Precategory z w) + (g : hom-function-Precategory y z) + (f : hom-function-Precategory x y) → ( comp-hom-function-Precategory (comp-hom-function-Precategory h g) f) = ( comp-hom-function-Precategory h (comp-hom-function-Precategory g f)) associative-comp-hom-function-Precategory = @@ -70,18 +70,18 @@ module _ associative-composition-structure-Precategory function-Precategory id-hom-function-Precategory : - {x : obj-function-Precategory} → type-hom-function-Precategory x x + {x : obj-function-Precategory} → hom-function-Precategory x x id-hom-function-Precategory = id-hom-Precategory function-Precategory left-unit-law-comp-hom-function-Precategory : {x y : obj-function-Precategory} - (f : type-hom-function-Precategory x y) → + (f : hom-function-Precategory x y) → comp-hom-function-Precategory id-hom-function-Precategory f = f left-unit-law-comp-hom-function-Precategory = left-unit-law-comp-hom-Precategory function-Precategory right-unit-law-comp-hom-function-Precategory : - {x y : obj-function-Precategory} (f : type-hom-function-Precategory x y) → + {x y : obj-function-Precategory} (f : hom-function-Precategory x y) → comp-hom-function-Precategory f id-hom-function-Precategory = f right-unit-law-comp-hom-function-Precategory = right-unit-law-comp-hom-Precategory function-Precategory @@ -103,7 +103,7 @@ module _ where is-fiberwise-iso-is-iso-function-Precategory : - (f : type-hom-function-Precategory I C x y) → + (f : hom-function-Precategory I C x y) → is-iso-hom-Precategory (function-Precategory I C) f → (i : I) → is-iso-hom-Precategory C (f i) is-fiberwise-iso-is-iso-function-Precategory = @@ -116,7 +116,7 @@ module _ fiberwise-iso-iso-Π-Precategory I (λ _ → C) is-iso-function-is-fiberwise-iso-Precategory : - (f : type-hom-function-Precategory I C x y) → + (f : hom-function-Precategory I C x y) → ((i : I) → is-iso-hom-Precategory C (f i)) → is-iso-hom-Precategory (function-Precategory I C) f is-iso-function-is-fiberwise-iso-Precategory = @@ -129,26 +129,26 @@ module _ iso-Π-fiberwise-iso-Precategory I (λ _ → C) is-equiv-is-fiberwise-iso-is-iso-function-Precategory : - (f : type-hom-function-Precategory I C x y) → + (f : hom-function-Precategory I C x y) → is-equiv (is-fiberwise-iso-is-iso-function-Precategory f) is-equiv-is-fiberwise-iso-is-iso-function-Precategory = is-equiv-is-fiberwise-iso-is-iso-Π-Precategory I (λ _ → C) equiv-is-fiberwise-iso-is-iso-function-Precategory : - (f : type-hom-function-Precategory I C x y) → + (f : hom-function-Precategory I C x y) → ( is-iso-hom-Precategory (function-Precategory I C) f) ≃ ( (i : I) → is-iso-hom-Precategory C (f i)) equiv-is-fiberwise-iso-is-iso-function-Precategory = equiv-is-fiberwise-iso-is-iso-Π-Precategory I (λ _ → C) is-equiv-is-iso-function-is-fiberwise-iso-Precategory : - (f : type-hom-function-Precategory I C x y) → + (f : hom-function-Precategory I C x y) → is-equiv (is-iso-function-is-fiberwise-iso-Precategory f) is-equiv-is-iso-function-is-fiberwise-iso-Precategory = is-equiv-is-iso-Π-is-fiberwise-iso-Precategory I (λ _ → C) equiv-is-iso-function-is-fiberwise-iso-Precategory : - ( f : type-hom-function-Precategory I C x y) → + ( f : hom-function-Precategory I C x y) → ( (i : I) → is-iso-hom-Precategory C (f i)) ≃ ( is-iso-hom-Precategory (function-Precategory I C) f) equiv-is-iso-function-is-fiberwise-iso-Precategory = diff --git a/src/category-theory/functors-categories.lagda.md b/src/category-theory/functors-categories.lagda.md index 5ff7a9b92d..d040adfbbb 100644 --- a/src/category-theory/functors-categories.lagda.md +++ b/src/category-theory/functors-categories.lagda.md @@ -50,8 +50,8 @@ module _ map-hom-map-Category : (F : map-Category) {x y : obj-Category C} → - type-hom-Category C x y → - type-hom-Category D + hom-Category C x y → + hom-Category D ( map-obj-map-Category F x) ( map-obj-map-Category F y) map-hom-map-Category = @@ -128,8 +128,8 @@ module _ map-hom-functor-Category : (F : functor-Category) → {x y : obj-Category C} → - (f : type-hom-Category C x y) → - type-hom-Category D + (f : hom-Category C x y) → + hom-Category D ( map-obj-functor-Category F x) ( map-obj-functor-Category F y) map-hom-functor-Category = @@ -143,7 +143,7 @@ module _ preserves-comp-functor-Category : ( F : functor-Category) {x y z : obj-Category C} - ( g : type-hom-Category C y z) (f : type-hom-Category C x y) → + ( g : hom-Category C y z) (f : hom-Category C x y) → ( map-hom-functor-Category F (comp-hom-Category C g f)) = ( comp-hom-Category D ( map-hom-functor-Category F g) diff --git a/src/category-theory/functors-large-precategories.lagda.md b/src/category-theory/functors-large-precategories.lagda.md index 4d39978810..87620a7d6e 100644 --- a/src/category-theory/functors-large-precategories.lagda.md +++ b/src/category-theory/functors-large-precategories.lagda.md @@ -47,8 +47,8 @@ module _ { l1 l2 : Level} { X : obj-Large-Precategory C l1} { Y : obj-Large-Precategory C l2} → - type-hom-Large-Precategory C X Y → - type-hom-Large-Precategory D + hom-Large-Precategory C X Y → + hom-Large-Precategory D ( map-obj-functor-Large-Precategory X) ( map-obj-functor-Large-Precategory Y) preserves-comp-functor-Large-Precategory : @@ -56,8 +56,8 @@ module _ { X : obj-Large-Precategory C l1} { Y : obj-Large-Precategory C l2} { Z : obj-Large-Precategory C l3} - ( g : type-hom-Large-Precategory C Y Z) - ( f : type-hom-Large-Precategory C X Y) → + ( g : hom-Large-Precategory C Y Z) + ( f : hom-Large-Precategory C X Y) → ( map-hom-functor-Large-Precategory ( comp-hom-Large-Precategory C g f)) = ( comp-hom-Large-Precategory D diff --git a/src/category-theory/functors-precategories.lagda.md b/src/category-theory/functors-precategories.lagda.md index adf38a65bb..12309b608a 100644 --- a/src/category-theory/functors-precategories.lagda.md +++ b/src/category-theory/functors-precategories.lagda.md @@ -7,7 +7,7 @@ module category-theory.functors-precategories where
Imports ```agda -open import category-theory.maps-of-categories +open import category-theory.maps-precategories open import category-theory.precategories open import foundation.action-on-identifications-functions @@ -54,7 +54,7 @@ module _ preserves-comp-hom-map-Precategory : UU (l1 ⊔ l2 ⊔ l4) preserves-comp-hom-map-Precategory = {x y z : obj-Precategory C} - (g : type-hom-Precategory C y z) (f : type-hom-Precategory C x y) → + (g : hom-Precategory C y z) (f : hom-Precategory C x y) → ( map-hom-map-Precategory C D F (comp-hom-Precategory C g f)) = ( comp-hom-Precategory D ( map-hom-map-Precategory C D F g) @@ -94,8 +94,8 @@ module _ Σ ( obj-Precategory C → obj-Precategory D) ( λ F₀ → Σ ( {x y : obj-Precategory C} - (f : type-hom-Precategory C x y) → - type-hom-Precategory D (F₀ x) (F₀ y)) + (f : hom-Precategory C x y) → + hom-Precategory D (F₀ x) (F₀ y)) ( λ F₁ → is-functor-map-Precategory C D (F₀ , F₁))) map-obj-functor-Precategory : @@ -105,8 +105,8 @@ module _ map-hom-functor-Precategory : (F : functor-Precategory) → {x y : obj-Precategory C} → - (f : type-hom-Precategory C x y) → - type-hom-Precategory D + (f : hom-Precategory C x y) → + hom-Precategory D ( map-obj-functor-Precategory F x) ( map-obj-functor-Precategory F y) map-hom-functor-Precategory F = pr1 (pr2 F) @@ -117,7 +117,7 @@ module _ preserves-comp-functor-Precategory : (F : functor-Precategory) {x y z : obj-Precategory C} - (g : type-hom-Precategory C y z) (f : type-hom-Precategory C x y) → + (g : hom-Precategory C y z) (f : hom-Precategory C x y) → ( map-hom-functor-Precategory F (comp-hom-Precategory C g f)) = ( comp-hom-Precategory D ( map-hom-functor-Precategory F g) @@ -202,7 +202,7 @@ module _ ( λ g → is-prop-Π ( λ f → - is-set-type-hom-Precategory D + is-set-hom-Precategory D ( map-obj-map-Precategory C D F x) ( map-obj-map-Precategory C D F z) ( map-hom-map-Precategory C D F @@ -222,7 +222,7 @@ module _ is-prop-preserves-id-hom-map-Precategory = is-prop-Π ( λ x → - is-set-type-hom-Precategory D + is-set-hom-Precategory D ( map-obj-map-Precategory C D F x) ( map-obj-map-Precategory C D F x) ( map-hom-map-Precategory C D F (id-hom-Precategory C {x})) @@ -267,8 +267,8 @@ module _ ( obj-Precategory C → obj-Precategory D) ( λ F₀ → { x y : obj-Precategory C} → - type-hom-Precategory C x y → - type-hom-Precategory D (F₀ x) (F₀ y)) + hom-Precategory C x y → + hom-Precategory D (F₀ x) (F₀ y)) ( pr1 ∘ is-functor-map-Precategory-Prop C D)))) ``` diff --git a/src/category-theory/groupoids.lagda.md b/src/category-theory/groupoids.lagda.md index 9125285f4a..87e0a98386 100644 --- a/src/category-theory/groupoids.lagda.md +++ b/src/category-theory/groupoids.lagda.md @@ -63,37 +63,37 @@ module _ obj-Groupoid : UU l1 obj-Groupoid = obj-Category category-Groupoid - hom-Groupoid : obj-Groupoid → obj-Groupoid → Set l2 - hom-Groupoid = hom-Category category-Groupoid + hom-set-Groupoid : obj-Groupoid → obj-Groupoid → Set l2 + hom-set-Groupoid = hom-set-Category category-Groupoid - type-hom-Groupoid : obj-Groupoid → obj-Groupoid → UU l2 - type-hom-Groupoid = type-hom-Category category-Groupoid + hom-Groupoid : obj-Groupoid → obj-Groupoid → UU l2 + hom-Groupoid = hom-Category category-Groupoid id-hom-Groupoid : - {x : obj-Groupoid} → type-hom-Groupoid x x + {x : obj-Groupoid} → hom-Groupoid x x id-hom-Groupoid = id-hom-Category category-Groupoid comp-hom-Groupoid : - {x y z : obj-Groupoid} → type-hom-Groupoid y z → - type-hom-Groupoid x y → type-hom-Groupoid x z + {x y z : obj-Groupoid} → hom-Groupoid y z → + hom-Groupoid x y → hom-Groupoid x z comp-hom-Groupoid = comp-hom-Category category-Groupoid associative-comp-hom-Groupoid : - {x y z w : obj-Groupoid} (h : type-hom-Groupoid z w) - (g : type-hom-Groupoid y z) (f : type-hom-Groupoid x y) → + {x y z w : obj-Groupoid} (h : hom-Groupoid z w) + (g : hom-Groupoid y z) (f : hom-Groupoid x y) → ( comp-hom-Groupoid (comp-hom-Groupoid h g) f) = ( comp-hom-Groupoid h (comp-hom-Groupoid g f)) associative-comp-hom-Groupoid = associative-comp-hom-Category category-Groupoid left-unit-law-comp-hom-Groupoid : - {x y : obj-Groupoid} (f : type-hom-Groupoid x y) → + {x y : obj-Groupoid} (f : hom-Groupoid x y) → ( comp-hom-Groupoid id-hom-Groupoid f) = f left-unit-law-comp-hom-Groupoid = left-unit-law-comp-hom-Category category-Groupoid right-unit-law-comp-hom-Groupoid : - {x y : obj-Groupoid} (f : type-hom-Groupoid x y) → + {x y : obj-Groupoid} (f : hom-Groupoid x y) → ( comp-hom-Groupoid f id-hom-Groupoid) = f right-unit-law-comp-hom-Groupoid = right-unit-law-comp-hom-Category category-Groupoid diff --git a/src/category-theory/initial-objects-large-precategories.lagda.md b/src/category-theory/initial-objects-large-precategories.lagda.md index 5cdcc662f8..c49900291d 100644 --- a/src/category-theory/initial-objects-large-precategories.lagda.md +++ b/src/category-theory/initial-objects-large-precategories.lagda.md @@ -35,5 +35,5 @@ module _ is-initial-obj-Large-Precategory : UUω is-initial-obj-Large-Precategory = {l2 : Level} (Y : obj-Large-Precategory C l2) → - is-contr (type-hom-Large-Precategory C X Y) + is-contr (hom-Large-Precategory C X Y) ``` diff --git a/src/category-theory/initial-objects-precategories.lagda.md b/src/category-theory/initial-objects-precategories.lagda.md index 99c381a7f8..dac1af8fa9 100644 --- a/src/category-theory/initial-objects-precategories.lagda.md +++ b/src/category-theory/initial-objects-precategories.lagda.md @@ -39,7 +39,7 @@ module _ is-initial-prop-obj-Precategory = Π-Prop ( obj-Precategory C) - ( λ y → is-contr-Prop (type-hom-Precategory C x y)) + ( λ y → is-contr-Prop (hom-Precategory C x y)) is-initial-obj-Precategory : UU (l1 ⊔ l2) is-initial-obj-Precategory = type-Prop is-initial-prop-obj-Precategory @@ -56,12 +56,12 @@ module _ hom-is-initial-obj-Precategory : (y : obj-Precategory C) → - type-hom-Precategory C x y + hom-Precategory C x y hom-is-initial-obj-Precategory = center ∘ t is-unique-hom-is-initial-obj-Precategory : (y : obj-Precategory C) → - (f : type-hom-Precategory C x y) → + (f : hom-Precategory C x y) → hom-is-initial-obj-Precategory y = f is-unique-hom-is-initial-obj-Precategory = contraction ∘ t ``` @@ -89,7 +89,7 @@ module _ hom-initial-obj-Precategory : (y : obj-Precategory C) → - type-hom-Precategory C obj-initial-obj-Precategory y + hom-Precategory C obj-initial-obj-Precategory y hom-initial-obj-Precategory = hom-is-initial-obj-Precategory C ( obj-initial-obj-Precategory) @@ -97,7 +97,7 @@ module _ is-unique-hom-initial-obj-Precategory : (y : obj-Precategory C) → - (f : type-hom-Precategory C obj-initial-obj-Precategory y) → + (f : hom-Precategory C obj-initial-obj-Precategory y) → hom-initial-obj-Precategory y = f is-unique-hom-initial-obj-Precategory = is-unique-hom-is-initial-obj-Precategory C diff --git a/src/category-theory/isomorphisms-in-categories.lagda.md b/src/category-theory/isomorphisms-in-categories.lagda.md index 26a512f5c0..2847928976 100644 --- a/src/category-theory/isomorphisms-in-categories.lagda.md +++ b/src/category-theory/isomorphisms-in-categories.lagda.md @@ -43,7 +43,7 @@ is-iso-hom-Category : {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - (f : type-hom-Category C x y) → + (f : hom-Category C x y) → UU l2 is-iso-hom-Category C = is-iso-hom-Precategory (precategory-Category C) @@ -51,11 +51,11 @@ module _ {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - {f : type-hom-Category C x y} + {f : hom-Category C x y} where hom-inv-is-iso-hom-Category : - is-iso-hom-Category C f → type-hom-Category C y x + is-iso-hom-Category C f → hom-Category C y x hom-inv-is-iso-hom-Category = hom-inv-is-iso-hom-Precategory (precategory-Category C) @@ -93,7 +93,7 @@ module _ (f : iso-Category C x y) where - hom-iso-Category : type-hom-Category C x y + hom-iso-Category : hom-Category C x y hom-iso-Category = hom-iso-Precategory (precategory-Category C) f is-iso-hom-iso-Category : @@ -101,7 +101,7 @@ module _ is-iso-hom-iso-Category = is-iso-hom-iso-Precategory (precategory-Category C) f - hom-inv-iso-Category : type-hom-Category C y x + hom-inv-iso-Category : hom-Category C y x hom-inv-iso-Category = hom-inv-iso-Precategory (precategory-Category C) f is-section-hom-inv-iso-Category : @@ -178,12 +178,12 @@ module _ where is-prop-is-iso-hom-Category : - (f : type-hom-Category C x y) → is-prop (is-iso-hom-Category C f) + (f : hom-Category C x y) → is-prop (is-iso-hom-Category C f) is-prop-is-iso-hom-Category = is-prop-is-iso-hom-Precategory (precategory-Category C) is-iso-prop-hom-Category : - (f : type-hom-Category C x y) → Prop l2 + (f : hom-Category C x y) → Prop l2 is-iso-prop-hom-Category = is-iso-prop-hom-Precategory (precategory-Category C) ``` @@ -232,14 +232,14 @@ module _ {l1 l2 : Level} (C : Category l1 l2) {x y z : obj-Category C} - {g : type-hom-Category C y z} - {f : type-hom-Category C x y} + {g : hom-Category C y z} + {f : hom-Category C x y} where hom-comp-is-iso-hom-Category : is-iso-hom-Category C g → is-iso-hom-Category C f → - type-hom-Category C z x + hom-Category C z x hom-comp-is-iso-hom-Category = hom-comp-is-iso-hom-Precategory (precategory-Category C) @@ -281,7 +281,7 @@ module _ (f : iso-Category C x y) where - hom-comp-iso-Category : type-hom-Category C x z + hom-comp-iso-Category : hom-Category C x z hom-comp-iso-Category = hom-comp-iso-Precategory (precategory-Category C) g f is-iso-comp-iso-Category : @@ -292,7 +292,7 @@ module _ comp-iso-Category : iso-Category C x z comp-iso-Category = comp-iso-Precategory (precategory-Category C) g f - hom-inv-comp-iso-Category : type-hom-Category C z x + hom-inv-comp-iso-Category : hom-Category C z x hom-inv-comp-iso-Category = hom-inv-comp-iso-Precategory (precategory-Category C) g f @@ -320,7 +320,7 @@ module _ {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - {f : type-hom-Category C x y} + {f : hom-Category C x y} where is-iso-inv-is-iso-hom-Category : @@ -443,11 +443,11 @@ module _ {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - {f : type-hom-Category C x y} + {f : hom-Category C x y} (H : (z : obj-Category C) → is-equiv (precomp-hom-Category C f z)) where - hom-inv-is-iso-is-equiv-precomp-hom-Category : type-hom-Category C y x + hom-inv-is-iso-is-equiv-precomp-hom-Category : hom-Category C y x hom-inv-is-iso-is-equiv-precomp-hom-Category = hom-inv-is-iso-is-equiv-precomp-hom-Precategory (precategory-Category C) H @@ -508,11 +508,11 @@ module _ {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} - {f : type-hom-Category C x y} + {f : hom-Category C x y} (H : (z : obj-Category C) → is-equiv (postcomp-hom-Category C f z)) where - hom-inv-is-iso-is-equiv-postcomp-hom-Category : type-hom-Category C y x + hom-inv-is-iso-is-equiv-postcomp-hom-Category : hom-Category C y x hom-inv-is-iso-is-equiv-postcomp-hom-Category = hom-inv-is-iso-is-equiv-postcomp-hom-Precategory (precategory-Category C) H @@ -553,11 +553,11 @@ module _ where is-prop-iso-Category : - is-prop (type-hom-Category C x y) → is-prop (iso-Category C x y) + is-prop (hom-Category C x y) → is-prop (iso-Category C x y) is-prop-iso-Category = is-prop-iso-Precategory (precategory-Category C) iso-prop-Category : - is-prop (type-hom-Category C x y) → Prop l2 + is-prop (hom-Category C x y) → Prop l2 iso-prop-Category = iso-prop-Precategory (precategory-Category C) ``` @@ -570,34 +570,34 @@ module _ where is-iso-is-prop-hom-Category' : - is-prop (type-hom-Category C x x) → - is-prop (type-hom-Category C y y) → - (f : type-hom-Category C x y) → - type-hom-Category C y x → + is-prop (hom-Category C x x) → + is-prop (hom-Category C y y) → + (f : hom-Category C x y) → + hom-Category C y x → is-iso-hom-Category C f is-iso-is-prop-hom-Category' = is-iso-is-prop-hom-Precategory' (precategory-Category C) iso-is-prop-hom-Category' : - is-prop (type-hom-Category C x x) → - is-prop (type-hom-Category C y y) → - type-hom-Category C x y → - type-hom-Category C y x → + is-prop (hom-Category C x x) → + is-prop (hom-Category C y y) → + hom-Category C x y → + hom-Category C y x → iso-Category C x y iso-is-prop-hom-Category' = iso-is-prop-hom-Precategory' (precategory-Category C) is-iso-is-prop-hom-Category : - ((x' y' : obj-Category C) → is-prop (type-hom-Category C x' y')) → - (f : type-hom-Category C x y) → type-hom-Category C y x → + ((x' y' : obj-Category C) → is-prop (hom-Category C x' y')) → + (f : hom-Category C x y) → hom-Category C y x → is-iso-hom-Category C f is-iso-is-prop-hom-Category = is-iso-is-prop-hom-Precategory (precategory-Category C) iso-is-prop-hom-Category : - ((x' y' : obj-Category C) → is-prop (type-hom-Category C x' y')) → - type-hom-Category C x y → - type-hom-Category C y x → + ((x' y' : obj-Category C) → is-prop (hom-Category C x' y')) → + hom-Category C x y → + hom-Category C y x → iso-Category C x y iso-is-prop-hom-Category = iso-is-prop-hom-Precategory (precategory-Category C) diff --git a/src/category-theory/isomorphisms-in-large-categories.lagda.md b/src/category-theory/isomorphisms-in-large-categories.lagda.md index a3174a1790..dc82d645c5 100644 --- a/src/category-theory/isomorphisms-in-large-categories.lagda.md +++ b/src/category-theory/isomorphisms-in-large-categories.lagda.md @@ -38,7 +38,7 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Category α β) {l1 l2 : Level} {X : obj-Large-Category C l1} {Y : obj-Large-Category C l2} - (f : type-hom-Large-Category C X Y) + (f : hom-Large-Category C X Y) where is-iso-hom-Large-Category : UU (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) @@ -46,7 +46,7 @@ module _ is-iso-hom-Large-Precategory (large-precategory-Large-Category C) f hom-inv-is-iso-hom-Large-Category : - is-iso-hom-Large-Category → type-hom-Large-Category C Y X + is-iso-hom-Large-Category → hom-Large-Category C Y X hom-inv-is-iso-hom-Large-Category = hom-inv-is-iso-hom-Large-Precategory ( large-precategory-Large-Category C) @@ -91,7 +91,7 @@ module _ (f : iso-Large-Category C X Y) where - hom-iso-Large-Category : type-hom-Large-Category C X Y + hom-iso-Large-Category : hom-Large-Category C X Y hom-iso-Large-Category = hom-iso-Large-Precategory (large-precategory-Large-Category C) f @@ -100,7 +100,7 @@ module _ is-iso-hom-iso-Large-Category = is-iso-hom-iso-Large-Precategory (large-precategory-Large-Category C) f - hom-inv-iso-Large-Category : type-hom-Large-Category C Y X + hom-inv-iso-Large-Category : hom-Large-Category C Y X hom-inv-iso-Large-Category = hom-inv-iso-Large-Precategory (large-precategory-Large-Category C) f @@ -195,21 +195,21 @@ module _ where all-elements-equal-is-iso-hom-Large-Category : - (f : type-hom-Large-Category C X Y) + (f : hom-Large-Category C X Y) (H K : is-iso-hom-Large-Category C f) → H = K all-elements-equal-is-iso-hom-Large-Category = all-elements-equal-is-iso-hom-Large-Precategory ( large-precategory-Large-Category C) is-prop-is-iso-hom-Large-Category : - (f : type-hom-Large-Category C X Y) → + (f : hom-Large-Category C X Y) → is-prop (is-iso-hom-Large-Category C f) is-prop-is-iso-hom-Large-Category f = is-prop-all-elements-equal ( all-elements-equal-is-iso-hom-Large-Category f) is-iso-prop-hom-Large-Category : - (f : type-hom-Large-Category C X Y) → Prop (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) + (f : hom-Large-Category C X Y) → Prop (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) is-iso-prop-hom-Large-Category = is-iso-prop-hom-Large-Precategory (large-precategory-Large-Category C) ``` @@ -260,14 +260,14 @@ module _ {X : obj-Large-Category C l1} {Y : obj-Large-Category C l2} {Z : obj-Large-Category C l3} - {g : type-hom-Large-Category C Y Z} - {f : type-hom-Large-Category C X Y} + {g : hom-Large-Category C Y Z} + {f : hom-Large-Category C X Y} where hom-comp-is-iso-hom-Large-Category : is-iso-hom-Large-Category C g → is-iso-hom-Large-Category C f → - type-hom-Large-Category C Z X + hom-Large-Category C Z X hom-comp-is-iso-hom-Large-Category = hom-comp-is-iso-hom-Large-Precategory (large-precategory-Large-Category C) @@ -315,7 +315,7 @@ module _ where hom-comp-iso-Large-Category : - type-hom-Large-Category C X Z + hom-Large-Category C X Z hom-comp-iso-Large-Category = hom-comp-iso-Large-Precategory (large-precategory-Large-Category C) g f @@ -333,7 +333,7 @@ module _ comp-iso-Large-Precategory (large-precategory-Large-Category C) g f hom-inv-comp-iso-Large-Category : - type-hom-Large-Category C Z X + hom-Large-Category C Z X hom-inv-comp-iso-Large-Category = hom-inv-iso-Large-Category C comp-iso-Large-Category @@ -361,7 +361,7 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Category α β) {l1 l2 : Level} {X : obj-Large-Category C l1} {Y : obj-Large-Category C l2} - {f : type-hom-Large-Category C X Y} + {f : hom-Large-Category C X Y} where is-iso-inv-is-iso-hom-Large-Category : @@ -504,14 +504,14 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Category α β) {l1 l2 : Level} {X : obj-Large-Category C l1} {Y : obj-Large-Category C l2} - {f : type-hom-Large-Category C X Y} + {f : hom-Large-Category C X Y} (H : {l3 : Level} (Z : obj-Large-Category C l3) → is-equiv (precomp-hom-Large-Category C f Z)) where hom-inv-is-iso-is-equiv-precomp-hom-Large-Category : - type-hom-Large-Category C Y X + hom-Large-Category C Y X hom-inv-is-iso-is-equiv-precomp-hom-Large-Category = hom-inv-is-iso-is-equiv-precomp-hom-Large-Precategory ( large-precategory-Large-Category C) @@ -579,14 +579,14 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Category α β) {l1 l2 : Level} {X : obj-Large-Category C l1} {Y : obj-Large-Category C l2} - {f : type-hom-Large-Category C X Y} + {f : hom-Large-Category C X Y} (H : {l3 : Level} (Z : obj-Large-Category C l3) → is-equiv (postcomp-hom-Large-Category C Z f)) where hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category : - type-hom-Large-Category C Y X + hom-Large-Category C Y X hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category = hom-inv-is-iso-is-equiv-postcomp-hom-Large-Precategory ( large-precategory-Large-Category C) diff --git a/src/category-theory/isomorphisms-in-large-precategories.lagda.md b/src/category-theory/isomorphisms-in-large-precategories.lagda.md index 92ce8dd147..a30040013b 100644 --- a/src/category-theory/isomorphisms-in-large-precategories.lagda.md +++ b/src/category-theory/isomorphisms-in-large-precategories.lagda.md @@ -42,18 +42,18 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} - (f : type-hom-Large-Precategory C X Y) + (f : hom-Large-Precategory C X Y) where is-iso-hom-Large-Precategory : UU (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) is-iso-hom-Large-Precategory = - Σ ( type-hom-Large-Precategory C Y X) + Σ ( hom-Large-Precategory C Y X) ( λ g → ( comp-hom-Large-Precategory C f g = id-hom-Large-Precategory C) × ( comp-hom-Large-Precategory C g f = id-hom-Large-Precategory C)) hom-inv-is-iso-hom-Large-Precategory : - is-iso-hom-Large-Precategory → type-hom-Large-Precategory C Y X + is-iso-hom-Large-Precategory → hom-Large-Precategory C Y X hom-inv-is-iso-hom-Large-Precategory = pr1 is-section-hom-inv-is-iso-hom-Large-Precategory : @@ -80,7 +80,7 @@ module _ iso-Large-Precategory : UU (β l1 l1 ⊔ β l1 l2 ⊔ β l2 l1 ⊔ β l2 l2) iso-Large-Precategory = - Σ (type-hom-Large-Precategory C X Y) (is-iso-hom-Large-Precategory C) + Σ (hom-Large-Precategory C X Y) (is-iso-hom-Large-Precategory C) module _ {α : Level → Level} {β : Level → Level → Level} @@ -89,14 +89,14 @@ module _ (f : iso-Large-Precategory C X Y) where - hom-iso-Large-Precategory : type-hom-Large-Precategory C X Y + hom-iso-Large-Precategory : hom-Large-Precategory C X Y hom-iso-Large-Precategory = pr1 f is-iso-hom-iso-Large-Precategory : is-iso-hom-Large-Precategory C hom-iso-Large-Precategory is-iso-hom-iso-Large-Precategory = pr2 f - hom-inv-iso-Large-Precategory : type-hom-Large-Precategory C Y X + hom-inv-iso-Large-Precategory : hom-Large-Precategory C Y X hom-inv-iso-Large-Precategory = pr1 (pr2 f) is-section-hom-inv-iso-Large-Precategory : @@ -181,18 +181,18 @@ module _ where all-elements-equal-is-iso-hom-Large-Precategory : - (f : type-hom-Large-Precategory C X Y) + (f : hom-Large-Precategory C X Y) (H K : is-iso-hom-Large-Precategory C f) → H = K all-elements-equal-is-iso-hom-Large-Precategory f (g , p , q) (g' , p' , q') = eq-type-subtype ( λ g → prod-Prop ( Id-Prop - ( hom-Large-Precategory C Y Y) + ( hom-set-Large-Precategory C Y Y) ( comp-hom-Large-Precategory C f g) ( id-hom-Large-Precategory C)) ( Id-Prop - ( hom-Large-Precategory C X X) + ( hom-set-Large-Precategory C X X) ( comp-hom-Large-Precategory C g f) ( id-hom-Large-Precategory C))) ( ( inv (right-unit-law-comp-hom-Large-Precategory C g)) ∙ @@ -202,14 +202,14 @@ module _ ( left-unit-law-comp-hom-Large-Precategory C g')) is-prop-is-iso-hom-Large-Precategory : - (f : type-hom-Large-Precategory C X Y) → + (f : hom-Large-Precategory C X Y) → is-prop (is-iso-hom-Large-Precategory C f) is-prop-is-iso-hom-Large-Precategory f = is-prop-all-elements-equal ( all-elements-equal-is-iso-hom-Large-Precategory f) is-iso-prop-hom-Large-Precategory : - (f : type-hom-Large-Precategory C X Y) → Prop (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) + (f : hom-Large-Precategory C X Y) → Prop (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) pr1 (is-iso-prop-hom-Large-Precategory f) = is-iso-hom-Large-Precategory C f pr2 (is-iso-prop-hom-Large-Precategory f) = @@ -248,7 +248,7 @@ module _ is-set-iso-Large-Precategory = is-set-type-subtype ( is-iso-prop-hom-Large-Precategory C) - ( is-set-type-hom-Large-Precategory C X Y) + ( is-set-hom-Large-Precategory C X Y) iso-set-Large-Precategory : Set (β l1 l1 ⊔ β l1 l2 ⊔ β l2 l1 ⊔ β l2 l2) pr1 iso-set-Large-Precategory = iso-Large-Precategory C X Y @@ -264,14 +264,14 @@ module _ {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} {Z : obj-Large-Precategory C l3} - {g : type-hom-Large-Precategory C Y Z} - {f : type-hom-Large-Precategory C X Y} + {g : hom-Large-Precategory C Y Z} + {f : hom-Large-Precategory C X Y} where hom-comp-is-iso-hom-Large-Precategory : is-iso-hom-Large-Precategory C g → is-iso-hom-Large-Precategory C f → - type-hom-Large-Precategory C Z X + hom-Large-Precategory C Z X hom-comp-is-iso-hom-Large-Precategory q p = comp-hom-Large-Precategory C ( hom-inv-is-iso-hom-Large-Precategory C f p) @@ -351,7 +351,7 @@ module _ where hom-comp-iso-Large-Precategory : - type-hom-Large-Precategory C X Z + hom-Large-Precategory C X Z hom-comp-iso-Large-Precategory = comp-hom-Large-Precategory C ( hom-iso-Large-Precategory C g) @@ -370,7 +370,7 @@ module _ pr2 comp-iso-Large-Precategory = is-iso-comp-iso-Large-Precategory hom-inv-comp-iso-Large-Precategory : - type-hom-Large-Precategory C Z X + hom-Large-Precategory C Z X hom-inv-comp-iso-Large-Precategory = hom-inv-iso-Large-Precategory C comp-iso-Large-Precategory @@ -398,7 +398,7 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} - {f : type-hom-Large-Precategory C X Y} + {f : hom-Large-Precategory C X Y} where is-iso-inv-is-iso-hom-Large-Precategory : @@ -548,14 +548,14 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} - {f : type-hom-Large-Precategory C X Y} + {f : hom-Large-Precategory C X Y} (H : {l3 : Level} (Z : obj-Large-Precategory C l3) → is-equiv (precomp-hom-Large-Precategory C f Z)) where hom-inv-is-iso-is-equiv-precomp-hom-Large-Precategory : - type-hom-Large-Precategory C Y X + hom-Large-Precategory C Y X hom-inv-is-iso-is-equiv-precomp-hom-Large-Precategory = map-inv-is-equiv (H X) (id-hom-Large-Precategory C) @@ -629,14 +629,14 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} - {f : type-hom-Large-Precategory C X Y} + {f : hom-Large-Precategory C X Y} (H : {l3 : Level} (Z : obj-Large-Precategory C l3) → is-equiv (postcomp-hom-Large-Precategory C Z f)) where hom-inv-is-iso-is-equiv-postcomp-hom-Large-Precategory : - type-hom-Large-Precategory C Y X + hom-Large-Precategory C Y X hom-inv-is-iso-is-equiv-postcomp-hom-Large-Precategory = map-inv-is-equiv (H Y) (id-hom-Large-Precategory C) diff --git a/src/category-theory/isomorphisms-in-precategories.lagda.md b/src/category-theory/isomorphisms-in-precategories.lagda.md index 973f79f69b..cf6d9c14b0 100644 --- a/src/category-theory/isomorphisms-in-precategories.lagda.md +++ b/src/category-theory/isomorphisms-in-precategories.lagda.md @@ -40,10 +40,10 @@ is-iso-hom-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - (f : type-hom-Precategory C x y) → + (f : hom-Precategory C x y) → UU l2 is-iso-hom-Precategory C {x} {y} f = - Σ ( type-hom-Precategory C y x) + Σ ( hom-Precategory C y x) ( λ g → ( comp-hom-Precategory C f g = id-hom-Precategory C) × ( comp-hom-Precategory C g f = id-hom-Precategory C)) @@ -52,11 +52,11 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - {f : type-hom-Precategory C x y} + {f : hom-Precategory C x y} where hom-inv-is-iso-hom-Precategory : - is-iso-hom-Precategory C f → type-hom-Precategory C y x + is-iso-hom-Precategory C f → hom-Precategory C y x hom-inv-is-iso-hom-Precategory = pr1 is-section-hom-inv-is-iso-hom-Precategory : @@ -82,7 +82,7 @@ module _ where iso-Precategory : UU l2 - iso-Precategory = Σ (type-hom-Precategory C x y) (is-iso-hom-Precategory C) + iso-Precategory = Σ (hom-Precategory C x y) (is-iso-hom-Precategory C) module _ {l1 l2 : Level} @@ -91,14 +91,14 @@ module _ (f : iso-Precategory C x y) where - hom-iso-Precategory : type-hom-Precategory C x y + hom-iso-Precategory : hom-Precategory C x y hom-iso-Precategory = pr1 f is-iso-hom-iso-Precategory : is-iso-hom-Precategory C hom-iso-Precategory is-iso-hom-iso-Precategory = pr2 f - hom-inv-iso-Precategory : type-hom-Precategory C y x + hom-inv-iso-Precategory : hom-Precategory C y x hom-inv-iso-Precategory = hom-inv-is-iso-hom-Precategory C ( is-iso-hom-iso-Precategory) @@ -183,7 +183,7 @@ module _ where all-elements-equal-is-iso-hom-Precategory : - (f : type-hom-Precategory C x y) + (f : hom-Precategory C x y) (H K : is-iso-hom-Precategory C f) → H = K all-elements-equal-is-iso-hom-Precategory f (g , p , q) (g' , p' , q') = @@ -191,11 +191,11 @@ module _ ( λ g → prod-Prop ( Id-Prop - ( hom-Precategory C y y) + ( hom-set-Precategory C y y) ( comp-hom-Precategory C f g) ( id-hom-Precategory C)) ( Id-Prop - ( hom-Precategory C x x) + ( hom-set-Precategory C x x) ( comp-hom-Precategory C g f) ( id-hom-Precategory C))) ( ( inv (right-unit-law-comp-hom-Precategory C g)) ∙ @@ -205,14 +205,14 @@ module _ ( left-unit-law-comp-hom-Precategory C g')) is-prop-is-iso-hom-Precategory : - (f : type-hom-Precategory C x y) → + (f : hom-Precategory C x y) → is-prop (is-iso-hom-Precategory C f) is-prop-is-iso-hom-Precategory f = is-prop-all-elements-equal ( all-elements-equal-is-iso-hom-Precategory f) is-iso-prop-hom-Precategory : - (f : type-hom-Precategory C x y) → Prop l2 + (f : hom-Precategory C x y) → Prop l2 pr1 (is-iso-prop-hom-Precategory f) = is-iso-hom-Precategory C f pr2 (is-iso-prop-hom-Precategory f) = is-prop-is-iso-hom-Precategory f ``` @@ -250,7 +250,7 @@ module _ is-set-iso-Precategory = is-set-type-subtype ( is-iso-prop-hom-Precategory C) - ( is-set-type-hom-Precategory C x y) + ( is-set-hom-Precategory C x y) iso-set-Precategory : Set l2 pr1 iso-set-Precategory = iso-Precategory C x y @@ -264,14 +264,14 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) {x y z : obj-Precategory C} - {g : type-hom-Precategory C y z} - {f : type-hom-Precategory C x y} + {g : hom-Precategory C y z} + {f : hom-Precategory C x y} where hom-comp-is-iso-hom-Precategory : is-iso-hom-Precategory C g → is-iso-hom-Precategory C f → - type-hom-Precategory C z x + hom-Precategory C z x hom-comp-is-iso-hom-Precategory q p = comp-hom-Precategory C ( hom-inv-is-iso-hom-Precategory C p) @@ -350,7 +350,7 @@ module _ where hom-comp-iso-Precategory : - type-hom-Precategory C x z + hom-Precategory C x z hom-comp-iso-Precategory = comp-hom-Precategory C ( hom-iso-Precategory C g) @@ -367,7 +367,7 @@ module _ pr1 comp-iso-Precategory = hom-comp-iso-Precategory pr2 comp-iso-Precategory = is-iso-comp-iso-Precategory - hom-inv-comp-iso-Precategory : type-hom-Precategory C z x + hom-inv-comp-iso-Precategory : hom-Precategory C z x hom-inv-comp-iso-Precategory = hom-inv-iso-Precategory C comp-iso-Precategory @@ -395,7 +395,7 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - {f : type-hom-Precategory C x y} + {f : hom-Precategory C x y} where is-iso-inv-is-iso-hom-Precategory : @@ -543,11 +543,11 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - {f : type-hom-Precategory C x y} + {f : hom-Precategory C x y} (H : (z : obj-Precategory C) → is-equiv (precomp-hom-Precategory C f z)) where - hom-inv-is-iso-is-equiv-precomp-hom-Precategory : type-hom-Precategory C y x + hom-inv-is-iso-is-equiv-precomp-hom-Precategory : hom-Precategory C y x hom-inv-is-iso-is-equiv-precomp-hom-Precategory = map-inv-is-equiv (H x) (id-hom-Precategory C) @@ -620,11 +620,11 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - {f : type-hom-Precategory C x y} + {f : hom-Precategory C x y} (H : (z : obj-Precategory C) → is-equiv (postcomp-hom-Precategory C f z)) where - hom-inv-is-iso-is-equiv-postcomp-hom-Precategory : type-hom-Precategory C y x + hom-inv-is-iso-is-equiv-postcomp-hom-Precategory : hom-Precategory C y x hom-inv-is-iso-is-equiv-postcomp-hom-Precategory = map-inv-is-equiv (H y) (id-hom-Precategory C) @@ -677,11 +677,11 @@ module _ where is-prop-iso-Precategory : - is-prop (type-hom-Precategory C x y) → is-prop (iso-Precategory C x y) + is-prop (hom-Precategory C x y) → is-prop (iso-Precategory C x y) is-prop-iso-Precategory = is-prop-type-subtype (is-iso-prop-hom-Precategory C) iso-prop-Precategory : - is-prop (type-hom-Precategory C x y) → Prop l2 + is-prop (hom-Precategory C x y) → Prop l2 pr1 (iso-prop-Precategory _) = iso-Precategory C x y pr2 (iso-prop-Precategory is-prop-hom-C-x-y) = is-prop-iso-Precategory is-prop-hom-C-x-y @@ -696,10 +696,10 @@ module _ where is-iso-is-prop-hom-Precategory' : - is-prop (type-hom-Precategory C x x) → - is-prop (type-hom-Precategory C y y) → - (f : type-hom-Precategory C x y) → - type-hom-Precategory C y x → + is-prop (hom-Precategory C x x) → + is-prop (hom-Precategory C y y) → + (f : hom-Precategory C x y) → + hom-Precategory C y x → is-iso-hom-Precategory C f pr1 (is-iso-is-prop-hom-Precategory' _ _ f g) = g pr1 (pr2 (is-iso-is-prop-hom-Precategory' _ is-prop-hom-C-y-y f g)) = @@ -708,26 +708,26 @@ module _ eq-is-prop is-prop-hom-C-x-x iso-is-prop-hom-Precategory' : - is-prop (type-hom-Precategory C x x) → - is-prop (type-hom-Precategory C y y) → - type-hom-Precategory C x y → - type-hom-Precategory C y x → + is-prop (hom-Precategory C x x) → + is-prop (hom-Precategory C y y) → + hom-Precategory C x y → + hom-Precategory C y x → iso-Precategory C x y pr1 (iso-is-prop-hom-Precategory' _ _ f g) = f pr2 (iso-is-prop-hom-Precategory' is-prop-hom-C-x-x is-prop-hom-C-y-y f g) = is-iso-is-prop-hom-Precategory' is-prop-hom-C-x-x is-prop-hom-C-y-y f g is-iso-is-prop-hom-Precategory : - ((x' y' : obj-Precategory C) → is-prop (type-hom-Precategory C x' y')) → - (f : type-hom-Precategory C x y) → type-hom-Precategory C y x → + ((x' y' : obj-Precategory C) → is-prop (hom-Precategory C x' y')) → + (f : hom-Precategory C x y) → hom-Precategory C y x → is-iso-hom-Precategory C f is-iso-is-prop-hom-Precategory is-prop-hom-C = is-iso-is-prop-hom-Precategory' (is-prop-hom-C x x) (is-prop-hom-C y y) iso-is-prop-hom-Precategory : - ((x' y' : obj-Precategory C) → is-prop (type-hom-Precategory C x' y')) → - type-hom-Precategory C x y → - type-hom-Precategory C y x → + ((x' y' : obj-Precategory C) → is-prop (hom-Precategory C x' y')) → + hom-Precategory C x y → + hom-Precategory C y x → iso-Precategory C x y iso-is-prop-hom-Precategory is-prop-hom-C = iso-is-prop-hom-Precategory' (is-prop-hom-C x x) (is-prop-hom-C y y) diff --git a/src/category-theory/large-categories.lagda.md b/src/category-theory/large-categories.lagda.md index 3483fa1907..d9cc55ac5e 100644 --- a/src/category-theory/large-categories.lagda.md +++ b/src/category-theory/large-categories.lagda.md @@ -67,43 +67,43 @@ module _ obj-Large-Category = obj-Large-Precategory (large-precategory-Large-Category C) - hom-Large-Category : + hom-set-Large-Category : {l1 l2 : Level} → obj-Large-Category l1 → obj-Large-Category l2 → Set (β l1 l2) - hom-Large-Category = - hom-Large-Precategory (large-precategory-Large-Category C) + hom-set-Large-Category = + hom-set-Large-Precategory (large-precategory-Large-Category C) - type-hom-Large-Category : + hom-Large-Category : {l1 l2 : Level} (X : obj-Large-Category l1) (Y : obj-Large-Category l2) → UU (β l1 l2) - type-hom-Large-Category X Y = type-Set (hom-Large-Category X Y) + hom-Large-Category X Y = type-Set (hom-set-Large-Category X Y) - is-set-type-hom-Large-Category : + is-set-hom-Large-Category : {l1 l2 : Level} (X : obj-Large-Category l1) (Y : obj-Large-Category l2) → - is-set (type-hom-Large-Category X Y) - is-set-type-hom-Large-Category X Y = - is-set-type-Set (hom-Large-Category X Y) + is-set (hom-Large-Category X Y) + is-set-hom-Large-Category X Y = + is-set-type-Set (hom-set-Large-Category X Y) comp-hom-Large-Category : {l1 l2 l3 : Level} {X : obj-Large-Category l1} {Y : obj-Large-Category l2} {Z : obj-Large-Category l3} → - type-hom-Large-Category Y Z → - type-hom-Large-Category X Y → - type-hom-Large-Category X Z + hom-Large-Category Y Z → + hom-Large-Category X Y → + hom-Large-Category X Z comp-hom-Large-Category = comp-hom-Large-Precategory (large-precategory-Large-Category C) id-hom-Large-Category : {l1 : Level} {X : obj-Large-Category l1} → - type-hom-Large-Category X X + hom-Large-Category X X id-hom-Large-Category = id-hom-Large-Precategory (large-precategory-Large-Category C) @@ -113,9 +113,9 @@ module _ {Y : obj-Large-Category l2} {Z : obj-Large-Category l3} {W : obj-Large-Category l4} → - (h : type-hom-Large-Category Z W) - (g : type-hom-Large-Category Y Z) - (f : type-hom-Large-Category X Y) → + (h : hom-Large-Category Z W) + (g : hom-Large-Category Y Z) + (f : hom-Large-Category X Y) → ( comp-hom-Large-Category (comp-hom-Large-Category h g) f) = ( comp-hom-Large-Category h (comp-hom-Large-Category g f)) associative-comp-hom-Large-Category = @@ -125,7 +125,7 @@ module _ {l1 l2 : Level} {X : obj-Large-Category l1} {Y : obj-Large-Category l2} - (f : type-hom-Large-Category X Y) → + (f : hom-Large-Category X Y) → ( comp-hom-Large-Category id-hom-Large-Category f) = f left-unit-law-comp-hom-Large-Category = left-unit-law-comp-hom-Large-Precategory @@ -135,7 +135,7 @@ module _ {l1 l2 : Level} {X : obj-Large-Category l1} {Y : obj-Large-Category l2} - (f : type-hom-Large-Category X Y) → + (f : hom-Large-Category X Y) → ( comp-hom-Large-Category f id-hom-Large-Category) = f right-unit-law-comp-hom-Large-Category = right-unit-law-comp-hom-Large-Precategory @@ -146,8 +146,8 @@ module _ {X : obj-Large-Category l1} {Y : obj-Large-Category l2} {Z : obj-Large-Category l3} - {g g' : type-hom-Large-Category Y Z} (p : g = g') - {f f' : type-hom-Large-Category X Y} (q : f = f') → + {g g' : hom-Large-Category Y Z} (p : g = g') + {f f' : hom-Large-Category X Y} (q : f = f') → comp-hom-Large-Category g f = comp-hom-Large-Category g' f' ap-comp-hom-Large-Category p q = ap-binary comp-hom-Large-Category p q @@ -157,18 +157,18 @@ module _ {X : obj-Large-Category l1} {Y : obj-Large-Category l2} {Z : obj-Large-Category l3} → - type-hom-Large-Category X Y → - type-hom-Large-Category Y Z → - type-hom-Large-Category X Z + hom-Large-Category X Y → + hom-Large-Category Y Z → + hom-Large-Category X Z comp-hom-Large-Category' f g = comp-hom-Large-Category g f precomp-hom-Large-Category : {l1 l2 l3 : Level} {X : obj-Large-Category l1} {Y : obj-Large-Category l2} - (f : type-hom-Large-Category X Y) → + (f : hom-Large-Category X Y) → (Z : obj-Large-Category l3) → - type-hom-Large-Category Y Z → type-hom-Large-Category X Z + hom-Large-Category Y Z → hom-Large-Category X Z precomp-hom-Large-Category f Z g = comp-hom-Large-Category g f @@ -177,8 +177,8 @@ module _ (X : obj-Large-Category l1) {Y : obj-Large-Category l2} {Z : obj-Large-Category l3} - (f : type-hom-Large-Category Y Z) → - type-hom-Large-Category X Y → type-hom-Large-Category X Z + (f : hom-Large-Category Y Z) → + hom-Large-Category X Y → hom-Large-Category X Z postcomp-hom-Large-Category X f g = comp-hom-Large-Category f g ``` diff --git a/src/category-theory/large-precategories.lagda.md b/src/category-theory/large-precategories.lagda.md index 120ae06290..f64d4ca310 100644 --- a/src/category-theory/large-precategories.lagda.md +++ b/src/category-theory/large-precategories.lagda.md @@ -36,7 +36,7 @@ record obj-Large-Precategory : (l : Level) → UU (α l) - hom-Large-Precategory : + hom-set-Large-Precategory : {l1 l2 : Level} → obj-Large-Precategory l1 → obj-Large-Precategory l2 → @@ -47,14 +47,14 @@ record {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} {Z : obj-Large-Precategory l3} → - type-Set (hom-Large-Precategory Y Z) → - type-Set (hom-Large-Precategory X Y) → - type-Set (hom-Large-Precategory X Z) + type-Set (hom-set-Large-Precategory Y Z) → + type-Set (hom-set-Large-Precategory X Y) → + type-Set (hom-set-Large-Precategory X Z) id-hom-Large-Precategory : {l1 : Level} {X : obj-Large-Precategory l1} → - type-Set (hom-Large-Precategory X X) + type-Set (hom-set-Large-Precategory X X) associative-comp-hom-Large-Precategory : {l1 l2 l3 l4 : Level} @@ -62,9 +62,9 @@ record {Y : obj-Large-Precategory l2} {Z : obj-Large-Precategory l3} {W : obj-Large-Precategory l4} → - (h : type-Set (hom-Large-Precategory Z W)) - (g : type-Set (hom-Large-Precategory Y Z)) - (f : type-Set (hom-Large-Precategory X Y)) → + (h : type-Set (hom-set-Large-Precategory Z W)) + (g : type-Set (hom-set-Large-Precategory Y Z)) + (f : type-Set (hom-set-Large-Precategory X Y)) → ( comp-hom-Large-Precategory (comp-hom-Large-Precategory h g) f) = ( comp-hom-Large-Precategory h (comp-hom-Large-Precategory g f)) @@ -72,14 +72,14 @@ record {l1 l2 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} - (f : type-Set (hom-Large-Precategory X Y)) → + (f : type-Set (hom-set-Large-Precategory X Y)) → ( comp-hom-Large-Precategory id-hom-Large-Precategory f) = f right-unit-law-comp-hom-Large-Precategory : {l1 l2 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} - (f : type-Set (hom-Large-Precategory X Y)) → + (f : type-Set (hom-set-Large-Precategory X Y)) → ( comp-hom-Large-Precategory f id-hom-Large-Precategory) = f open Large-Precategory public @@ -92,28 +92,28 @@ module _ (C : Large-Precategory α β) where - type-hom-Large-Precategory : + hom-Large-Precategory : {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) → UU (β l1 l2) - type-hom-Large-Precategory X Y = type-Set (hom-Large-Precategory C X Y) + hom-Large-Precategory X Y = type-Set (hom-set-Large-Precategory C X Y) - is-set-type-hom-Large-Precategory : + is-set-hom-Large-Precategory : {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) → - is-set (type-hom-Large-Precategory X Y) - is-set-type-hom-Large-Precategory X Y = - is-set-type-Set (hom-Large-Precategory C X Y) + is-set (hom-Large-Precategory X Y) + is-set-hom-Large-Precategory X Y = + is-set-type-Set (hom-set-Large-Precategory C X Y) ap-comp-hom-Large-Precategory : {l1 l2 l3 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} {Z : obj-Large-Precategory C l3} - {g g' : type-hom-Large-Precategory Y Z} (p : g = g') - {f f' : type-hom-Large-Precategory X Y} (q : f = f') → + {g g' : hom-Large-Precategory Y Z} (p : g = g') + {f f' : hom-Large-Precategory X Y} (q : f = f') → comp-hom-Large-Precategory C g f = comp-hom-Large-Precategory C g' f' ap-comp-hom-Large-Precategory = ap-binary (comp-hom-Large-Precategory C) @@ -123,9 +123,9 @@ module _ {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} {Z : obj-Large-Precategory C l3} → - type-hom-Large-Precategory X Y → - type-hom-Large-Precategory Y Z → - type-hom-Large-Precategory X Z + hom-Large-Precategory X Y → + hom-Large-Precategory Y Z → + hom-Large-Precategory X Z comp-hom-Large-Precategory' f g = comp-hom-Large-Precategory C g f ``` @@ -136,9 +136,9 @@ module _ {l1 l2 l3 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} - (f : type-hom-Large-Precategory X Y) → + (f : hom-Large-Precategory X Y) → (Z : obj-Large-Precategory C l3) → - type-hom-Large-Precategory Y Z → type-hom-Large-Precategory X Z + hom-Large-Precategory Y Z → hom-Large-Precategory X Z precomp-hom-Large-Precategory f Z g = comp-hom-Large-Precategory C g f ``` @@ -151,8 +151,8 @@ module _ (X : obj-Large-Precategory C l1) {Y : obj-Large-Precategory C l2} {Z : obj-Large-Precategory C l3} - (f : type-hom-Large-Precategory Y Z) → - type-hom-Large-Precategory X Y → type-hom-Large-Precategory X Z + (f : hom-Large-Precategory Y Z) → + hom-Large-Precategory X Y → hom-Large-Precategory X Z postcomp-hom-Large-Precategory X f g = comp-hom-Large-Precategory C f g ``` @@ -170,7 +170,7 @@ module _ pr1 (precategory-Large-Precategory l) = obj-Large-Precategory C l pr1 (pr2 (precategory-Large-Precategory l)) = - hom-Large-Precategory C + hom-set-Large-Precategory C pr1 (pr1 (pr2 (pr2 (precategory-Large-Precategory l)))) = comp-hom-Large-Precategory C pr2 (pr1 (pr2 (pr2 (precategory-Large-Precategory l)))) = diff --git a/src/category-theory/maps-precategories.lagda.md b/src/category-theory/maps-precategories.lagda.md index ffe47fc51f..dcea46aee2 100644 --- a/src/category-theory/maps-precategories.lagda.md +++ b/src/category-theory/maps-precategories.lagda.md @@ -10,14 +10,14 @@ module category-theory.maps-precategories where open import category-theory.precategories open import foundation.action-on-identifications-functions +open import foundation.binary-relations open import foundation.cartesian-product-types -open import foundation.functoriality-dependent-pair-types -open import foundation.function-extensionality open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences +open import foundation.function-extensionality open import foundation.function-types -open import foundation.binary-relations +open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction @@ -55,8 +55,8 @@ module _ Σ ( obj-Precategory C → obj-Precategory D) ( λ F₀ → {x y : obj-Precategory C} → - type-hom-Precategory C x y → - type-hom-Precategory D (F₀ x) (F₀ y)) + hom-Precategory C x y → + hom-Precategory D (F₀ x) (F₀ y)) map-obj-map-Precategory : (F : map-Precategory) → obj-Precategory C → obj-Precategory D @@ -65,8 +65,8 @@ module _ map-hom-map-Precategory : (F : map-Precategory) {x y : obj-Precategory C} → - type-hom-Precategory C x y → - type-hom-Precategory D + hom-Precategory C x y → + hom-Precategory D ( map-obj-map-Precategory F x) ( map-obj-map-Precategory F y) map-hom-map-Precategory = pr2 diff --git a/src/category-theory/monomorphisms-in-large-precategories.lagda.md b/src/category-theory/monomorphisms-in-large-precategories.lagda.md index 043c3a13b4..268d2b540e 100644 --- a/src/category-theory/monomorphisms-in-large-precategories.lagda.md +++ b/src/category-theory/monomorphisms-in-large-precategories.lagda.md @@ -34,7 +34,7 @@ module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} (l3 : Level) (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) - (f : type-hom-Large-Precategory C X Y) + (f : hom-Large-Precategory C X Y) where is-mono-Large-Precategory-Prop : Prop (α l3 ⊔ β l3 l1 ⊔ β l3 l2) @@ -92,12 +92,12 @@ module _ ( left-unit-law-comp-hom-Large-Precategory C h))))))) ( λ p → eq-is-prop - ( is-set-type-hom-Large-Precategory C Z Y + ( is-set-hom-Large-Precategory C Z Y ( comp-hom-Large-Precategory C ( hom-iso-Large-Precategory C f) ( g)) ( comp-hom-Large-Precategory C ( hom-iso-Large-Precategory C f) ( h)))) - ( λ p → eq-is-prop (is-set-type-hom-Large-Precategory C Z X g h)) + ( λ p → eq-is-prop (is-set-hom-Large-Precategory C Z X g h)) ``` diff --git a/src/category-theory/natural-isomorphisms-large-precategories.lagda.md b/src/category-theory/natural-isomorphisms-large-precategories.lagda.md index dfc4b200ac..76a586f5f9 100644 --- a/src/category-theory/natural-isomorphisms-large-precategories.lagda.md +++ b/src/category-theory/natural-isomorphisms-large-precategories.lagda.md @@ -57,7 +57,7 @@ module _ { l1 l2 : Level} { X : obj-Large-Precategory C l1} { Y : obj-Large-Precategory C l2} - ( f : type-hom-Large-Precategory C X Y) → + ( f : hom-Large-Precategory C X Y) → coherence-square-Large-Precategory D ( hom-iso-Large-Precategory D ( components-natural-isomorphism-Large-Precategory X)) diff --git a/src/category-theory/natural-numbers-object-precategories.lagda.md b/src/category-theory/natural-numbers-object-precategories.lagda.md index 86a94bb668..b55eb9b842 100644 --- a/src/category-theory/natural-numbers-object-precategories.lagda.md +++ b/src/category-theory/natural-numbers-object-precategories.lagda.md @@ -38,13 +38,13 @@ module _ is-natural-numbers-object-Precategory : (n : obj-Precategory C) → - type-hom-Precategory C t n → type-hom-Precategory C n n → UU (l1 ⊔ l2) + hom-Precategory C t n → hom-Precategory C n n → UU (l1 ⊔ l2) is-natural-numbers-object-Precategory n z s = (x : obj-Precategory C) - (q : type-hom-Precategory C t x) - (f : type-hom-Precategory C x x) → + (q : hom-Precategory C t x) + (f : hom-Precategory C x x) → ∃! - ( type-hom-Precategory C n x) + ( hom-Precategory C n x) ( λ u → ( comp-hom-Precategory C u z = q) × ( comp-hom-Precategory C u s = comp-hom-Precategory C f u)) @@ -52,8 +52,8 @@ module _ natural-numbers-object-Precategory : UU (l1 ⊔ l2) natural-numbers-object-Precategory = Σ (obj-Precategory C) λ n → - Σ (type-hom-Precategory C t n) λ z → - Σ (type-hom-Precategory C n n) λ s → + Σ (hom-Precategory C t n) λ z → + Σ (hom-Precategory C n n) λ s → is-natural-numbers-object-Precategory n z s module _ @@ -66,23 +66,23 @@ module _ object-natural-numbers-object-Precategory = pr1 nno zero-natural-numbers-object-Precategory : - type-hom-Precategory C t object-natural-numbers-object-Precategory + hom-Precategory C t object-natural-numbers-object-Precategory zero-natural-numbers-object-Precategory = pr1 (pr2 nno) succ-natural-numbers-object-Precategory : - type-hom-Precategory C + hom-Precategory C ( object-natural-numbers-object-Precategory) ( object-natural-numbers-object-Precategory) succ-natural-numbers-object-Precategory = pr1 (pr2 (pr2 nno)) module _ (x : obj-Precategory C) - (q : type-hom-Precategory C t x) - (f : type-hom-Precategory C x x) + (q : hom-Precategory C t x) + (f : hom-Precategory C x x) where morphism-natural-numbers-object-Precategory : - type-hom-Precategory C object-natural-numbers-object-Precategory x + hom-Precategory C object-natural-numbers-object-Precategory x morphism-natural-numbers-object-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 nno)) x q f)) @@ -103,7 +103,7 @@ module _ is-unique-morphism-natural-numbers-object-Precategory : ( u' : - type-hom-Precategory C object-natural-numbers-object-Precategory x) → + hom-Precategory C object-natural-numbers-object-Precategory x) → comp-hom-Precategory C u' zero-natural-numbers-object-Precategory = q → comp-hom-Precategory C u' succ-natural-numbers-object-Precategory = comp-hom-Precategory C f u' → diff --git a/src/category-theory/natural-transformations-large-precategories.lagda.md b/src/category-theory/natural-transformations-large-precategories.lagda.md index f7e32919f5..9c03cd7e84 100644 --- a/src/category-theory/natural-transformations-large-precategories.lagda.md +++ b/src/category-theory/natural-transformations-large-precategories.lagda.md @@ -41,10 +41,10 @@ coherence-square-Large-Precategory : {B : obj-Large-Precategory C l2} {X : obj-Large-Precategory C l3} {Y : obj-Large-Precategory C l4} - (top : type-hom-Large-Precategory C A B) - (left : type-hom-Large-Precategory C A X) - (right : type-hom-Large-Precategory C B Y) - (bottom : type-hom-Large-Precategory C X Y) → + (top : hom-Large-Precategory C A B) + (left : hom-Large-Precategory C A X) + (right : hom-Large-Precategory C B Y) + (bottom : hom-Large-Precategory C X Y) → UU (βC l1 l4) coherence-square-Large-Precategory C top left right bottom = comp-hom-Large-Precategory C right top = @@ -62,7 +62,7 @@ module _ hom-family-functor-Large-Precategory : UUω hom-family-functor-Large-Precategory = {l : Level} (X : obj-Large-Precategory C l) → - type-hom-Large-Precategory D + hom-Large-Precategory D ( map-obj-functor-Large-Precategory F X) ( map-obj-functor-Large-Precategory G X) @@ -75,7 +75,7 @@ module _ coherence-square-natural-transformation-Large-Precategory : {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} - (f : type-hom-Large-Precategory C X Y) → + (f : hom-Large-Precategory C X Y) → coherence-square-Large-Precategory D ( hom-family-natural-transformation-Large-Precategory X) ( map-hom-functor-Large-Precategory F f) diff --git a/src/category-theory/natural-transformations-precategories.lagda.md b/src/category-theory/natural-transformations-precategories.lagda.md index b10480f3b6..5fbaa5e894 100644 --- a/src/category-theory/natural-transformations-precategories.lagda.md +++ b/src/category-theory/natural-transformations-precategories.lagda.md @@ -50,14 +50,14 @@ module _ hom-family-functor-Precategory : UU (l1 ⊔ l4) hom-family-functor-Precategory = (x : obj-Precategory C) → - type-hom-Precategory D + hom-Precategory D ( map-obj-functor-Precategory C D F x) ( map-obj-functor-Precategory C D G x) is-natural-transformation-Precategory : hom-family-functor-Precategory → UU (l1 ⊔ l2 ⊔ l4) is-natural-transformation-Precategory γ = - {x y : obj-Precategory C} (f : type-hom-Precategory C x y) → + {x y : obj-Precategory C} (f : hom-Precategory C x y) → ( comp-hom-Precategory D (map-hom-functor-Precategory C D G f) (γ x)) = ( comp-hom-Precategory D (γ y) (map-hom-functor-Precategory C D F f)) @@ -155,7 +155,7 @@ module _ ( λ y → is-prop-Π ( λ f → - is-set-type-hom-Precategory D + is-set-hom-Precategory D ( map-obj-functor-Precategory C D F x) ( map-obj-functor-Precategory C D G y) ( comp-hom-Precategory D @@ -201,7 +201,7 @@ module _ is-set-Σ ( is-set-Π ( λ x → - is-set-type-hom-Precategory D + is-set-hom-Precategory D ( map-obj-functor-Precategory C D F x) ( map-obj-functor-Precategory C D G x))) ( λ α → diff --git a/src/category-theory/one-object-precategories.lagda.md b/src/category-theory/one-object-precategories.lagda.md index 768c46d211..94483f34cb 100644 --- a/src/category-theory/one-object-precategories.lagda.md +++ b/src/category-theory/one-object-precategories.lagda.md @@ -61,28 +61,28 @@ module _ {l : Level} (M : Monoid l) where - hom-one-object-precategory-Monoid : + hom-set-one-object-precategory-Monoid : unit → unit → Set l - hom-one-object-precategory-Monoid star star = set-Monoid M + hom-set-one-object-precategory-Monoid star star = set-Monoid M - type-hom-one-object-precategory-Monoid : + hom-one-object-precategory-Monoid : unit → unit → UU l - type-hom-one-object-precategory-Monoid x y = - type-Set (hom-one-object-precategory-Monoid x y) + hom-one-object-precategory-Monoid x y = + type-Set (hom-set-one-object-precategory-Monoid x y) comp-hom-one-object-precategory-Monoid : {x y z : unit} → - type-hom-one-object-precategory-Monoid y z → - type-hom-one-object-precategory-Monoid x y → - type-hom-one-object-precategory-Monoid x z + hom-one-object-precategory-Monoid y z → + hom-one-object-precategory-Monoid x y → + hom-one-object-precategory-Monoid x z comp-hom-one-object-precategory-Monoid {star} {star} {star} = mul-Monoid M associative-comp-hom-one-object-precategory-Monoid : {x y z w : unit} → - (h : type-hom-one-object-precategory-Monoid z w) - (g : type-hom-one-object-precategory-Monoid y z) - (f : type-hom-one-object-precategory-Monoid x y) → + (h : hom-one-object-precategory-Monoid z w) + (g : hom-one-object-precategory-Monoid y z) + (f : hom-one-object-precategory-Monoid x y) → comp-hom-one-object-precategory-Monoid ( comp-hom-one-object-precategory-Monoid h g) ( f) = @@ -95,18 +95,18 @@ module _ associative-composition-structure-one-object-precategory-Monoid : associative-composition-structure-Set - hom-one-object-precategory-Monoid + hom-set-one-object-precategory-Monoid pr1 associative-composition-structure-one-object-precategory-Monoid = comp-hom-one-object-precategory-Monoid pr2 associative-composition-structure-one-object-precategory-Monoid = associative-comp-hom-one-object-precategory-Monoid id-hom-one-object-precategory-Monoid : - (x : unit) → type-hom-one-object-precategory-Monoid x x + (x : unit) → hom-one-object-precategory-Monoid x x id-hom-one-object-precategory-Monoid star = unit-Monoid M left-unit-law-comp-hom-one-object-precategory-Monoid : - {x y : unit} (f : type-hom-one-object-precategory-Monoid x y) → + {x y : unit} (f : hom-one-object-precategory-Monoid x y) → comp-hom-one-object-precategory-Monoid ( id-hom-one-object-precategory-Monoid y) ( f) = @@ -115,7 +115,7 @@ module _ left-unit-law-mul-Monoid M right-unit-law-comp-hom-one-object-precategory-Monoid : - {x y : unit} (f : type-hom-one-object-precategory-Monoid x y) → + {x y : unit} (f : hom-one-object-precategory-Monoid x y) → comp-hom-one-object-precategory-Monoid ( f) ( id-hom-one-object-precategory-Monoid x) = @@ -125,7 +125,7 @@ module _ is-unital-composition-structure-one-object-precategory-Monoid : is-unital-composition-structure-Set - hom-one-object-precategory-Monoid + hom-set-one-object-precategory-Monoid associative-composition-structure-one-object-precategory-Monoid pr1 is-unital-composition-structure-one-object-precategory-Monoid = id-hom-one-object-precategory-Monoid @@ -137,7 +137,7 @@ module _ precategory-one-object-precategory-Monoid : Precategory lzero l pr1 precategory-one-object-precategory-Monoid = unit pr1 (pr2 precategory-one-object-precategory-Monoid) = - hom-one-object-precategory-Monoid + hom-set-one-object-precategory-Monoid pr1 (pr2 (pr2 precategory-one-object-precategory-Monoid)) = associative-composition-structure-one-object-precategory-Monoid pr2 (pr2 (pr2 precategory-one-object-precategory-Monoid)) = diff --git a/src/category-theory/opposite-precategories.lagda.md b/src/category-theory/opposite-precategories.lagda.md index ca4c62b9bc..a6b4bcf8ce 100644 --- a/src/category-theory/opposite-precategories.lagda.md +++ b/src/category-theory/opposite-precategories.lagda.md @@ -30,7 +30,7 @@ module _ opposite-Precategory : Precategory l1 l2 pr1 opposite-Precategory = obj-Precategory C - pr1 (pr2 opposite-Precategory) x y = hom-Precategory C y x + pr1 (pr2 opposite-Precategory) x y = hom-set-Precategory C y x pr1 (pr1 (pr2 (pr2 opposite-Precategory))) f g = comp-hom-Precategory C g f pr2 (pr1 (pr2 (pr2 opposite-Precategory))) f g h = inv (associative-comp-hom-Precategory C h g f) diff --git a/src/category-theory/precategories.lagda.md b/src/category-theory/precategories.lagda.md index fc3e3af816..9b36644117 100644 --- a/src/category-theory/precategories.lagda.md +++ b/src/category-theory/precategories.lagda.md @@ -77,39 +77,39 @@ module _ obj-Precategory : UU l1 obj-Precategory = pr1 C - hom-Precategory : (x y : obj-Precategory) → Set l2 - hom-Precategory = pr1 (pr2 C) + hom-set-Precategory : (x y : obj-Precategory) → Set l2 + hom-set-Precategory = pr1 (pr2 C) - type-hom-Precategory : (x y : obj-Precategory) → UU l2 - type-hom-Precategory x y = type-Set (hom-Precategory x y) + hom-Precategory : (x y : obj-Precategory) → UU l2 + hom-Precategory x y = type-Set (hom-set-Precategory x y) - is-set-type-hom-Precategory : - (x y : obj-Precategory) → is-set (type-hom-Precategory x y) - is-set-type-hom-Precategory x y = is-set-type-Set (hom-Precategory x y) + is-set-hom-Precategory : + (x y : obj-Precategory) → is-set (hom-Precategory x y) + is-set-hom-Precategory x y = is-set-type-Set (hom-set-Precategory x y) associative-composition-structure-Precategory : - associative-composition-structure-Set hom-Precategory + associative-composition-structure-Set hom-set-Precategory associative-composition-structure-Precategory = pr1 (pr2 (pr2 C)) comp-hom-Precategory : {x y z : obj-Precategory} → - type-hom-Precategory y z → - type-hom-Precategory x y → - type-hom-Precategory x z + hom-Precategory y z → + hom-Precategory x y → + hom-Precategory x z comp-hom-Precategory = pr1 associative-composition-structure-Precategory comp-hom-Precategory' : {x y z : obj-Precategory} → - type-hom-Precategory x y → - type-hom-Precategory y z → - type-hom-Precategory x z + hom-Precategory x y → + hom-Precategory y z → + hom-Precategory x z comp-hom-Precategory' f g = comp-hom-Precategory g f associative-comp-hom-Precategory : {x y z w : obj-Precategory} - (h : type-hom-Precategory z w) - (g : type-hom-Precategory y z) - (f : type-hom-Precategory x y) → + (h : hom-Precategory z w) + (g : hom-Precategory y z) + (f : hom-Precategory x y) → ( comp-hom-Precategory (comp-hom-Precategory h g) f) = ( comp-hom-Precategory h (comp-hom-Precategory g f)) associative-comp-hom-Precategory = @@ -117,21 +117,21 @@ module _ is-unital-composition-structure-Precategory : is-unital-composition-structure-Set - hom-Precategory + hom-set-Precategory associative-composition-structure-Precategory is-unital-composition-structure-Precategory = pr2 (pr2 (pr2 C)) - id-hom-Precategory : {x : obj-Precategory} → type-hom-Precategory x x + id-hom-Precategory : {x : obj-Precategory} → hom-Precategory x x id-hom-Precategory {x} = pr1 is-unital-composition-structure-Precategory x left-unit-law-comp-hom-Precategory : - {x y : obj-Precategory} (f : type-hom-Precategory x y) → + {x y : obj-Precategory} (f : hom-Precategory x y) → comp-hom-Precategory id-hom-Precategory f = f left-unit-law-comp-hom-Precategory = pr1 (pr2 is-unital-composition-structure-Precategory) right-unit-law-comp-hom-Precategory : - {x y : obj-Precategory} (f : type-hom-Precategory x y) → + {x y : obj-Precategory} (f : hom-Precategory x y) → comp-hom-Precategory f id-hom-Precategory = f right-unit-law-comp-hom-Precategory = pr2 (pr2 is-unital-composition-structure-Precategory) @@ -142,8 +142,8 @@ module _ ```agda precomp-hom-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - (f : type-hom-Precategory C x y) (z : obj-Precategory C) → - type-hom-Precategory C y z → type-hom-Precategory C x z + (f : hom-Precategory C x y) (z : obj-Precategory C) → + hom-Precategory C y z → hom-Precategory C x z precomp-hom-Precategory C f z g = comp-hom-Precategory C g f ``` @@ -152,8 +152,8 @@ precomp-hom-Precategory C f z g = comp-hom-Precategory C g f ```agda postcomp-hom-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) {x y : obj-Precategory C} - (f : type-hom-Precategory C x y) (z : obj-Precategory C) → - type-hom-Precategory C z x → type-hom-Precategory C z y + (f : hom-Precategory C x y) (z : obj-Precategory C) → + hom-Precategory C z x → hom-Precategory C z y postcomp-hom-Precategory C f z = comp-hom-Precategory C f ``` diff --git a/src/category-theory/pregroupoids.lagda.md b/src/category-theory/pregroupoids.lagda.md index 3bf8406238..d773657520 100644 --- a/src/category-theory/pregroupoids.lagda.md +++ b/src/category-theory/pregroupoids.lagda.md @@ -34,7 +34,7 @@ is-groupoid-Precategory-Prop C = ( obj-Precategory C) ( λ y → Π-Prop - ( type-hom-Precategory C x y) + ( hom-Precategory C x y) ( is-iso-prop-hom-Precategory C))) is-groupoid-Precategory : diff --git a/src/category-theory/products-in-precategories.lagda.md b/src/category-theory/products-in-precategories.lagda.md index f20ecd37f2..fa0135533f 100644 --- a/src/category-theory/products-in-precategories.lagda.md +++ b/src/category-theory/products-in-precategories.lagda.md @@ -44,21 +44,21 @@ module _ is-product-Precategory : (x y p : obj-Precategory C) → - type-hom-Precategory C p x → - type-hom-Precategory C p y → + hom-Precategory C p x → + hom-Precategory C p y → UU (l1 ⊔ l2) is-product-Precategory x y p l r = (z : obj-Precategory C) - (f : type-hom-Precategory C z x) → - (g : type-hom-Precategory C z y) → - (∃! (type-hom-Precategory C z p) λ h → + (f : hom-Precategory C z x) → + (g : hom-Precategory C z y) → + (∃! (hom-Precategory C z p) λ h → (comp-hom-Precategory C l h = f) × (comp-hom-Precategory C r h = g)) product-Precategory : obj-Precategory C → obj-Precategory C → UU (l1 ⊔ l2) product-Precategory x y = Σ (obj-Precategory C) λ p → - Σ (type-hom-Precategory C p x) λ l → - Σ (type-hom-Precategory C p y) λ r → + Σ (hom-Precategory C p x) λ l → + Σ (hom-Precategory C p y) λ r → is-product-Precategory x y p l r has-all-binary-products-Precategory : UU (l1 ⊔ l2) @@ -76,22 +76,22 @@ module _ pr1-product-Precategory : (x y : obj-Precategory C) → - type-hom-Precategory C (object-product-Precategory x y) x + hom-Precategory C (object-product-Precategory x y) x pr1-product-Precategory x y = pr1 (pr2 (t x y)) pr2-product-Precategory : (x y : obj-Precategory C) → - type-hom-Precategory C (object-product-Precategory x y) y + hom-Precategory C (object-product-Precategory x y) y pr2-product-Precategory x y = pr1 (pr2 (pr2 (t x y))) module _ (x y z : obj-Precategory C) - (f : type-hom-Precategory C z x) - (g : type-hom-Precategory C z y) + (f : hom-Precategory C z x) + (g : hom-Precategory C z y) where morphism-into-product-Precategory : - type-hom-Precategory C z (object-product-Precategory x y) + hom-Precategory C z (object-product-Precategory x y) morphism-into-product-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g)) @@ -110,7 +110,7 @@ module _ pr2 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) is-unique-morphism-into-product-Precategory : - (h : type-hom-Precategory C z (object-product-Precategory x y)) → + (h : hom-Precategory C z (object-product-Precategory x y)) → comp-hom-Precategory C (pr1-product-Precategory x y) h = f → comp-hom-Precategory C (pr2-product-Precategory x y) h = g → morphism-into-product-Precategory = h @@ -120,8 +120,8 @@ module _ module _ {l1 l2 : Level} (C : Precategory l1 l2) (x y p : obj-Precategory C) - (l : type-hom-Precategory C p x) - (r : type-hom-Precategory C p y) + (l : hom-Precategory C p x) + (r : hom-Precategory C p y) where is-prop-is-product-Precategory : is-prop (is-product-Precategory C x y p l r) @@ -149,12 +149,12 @@ module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-products-Precategory C) {x₁ x₂ y₁ y₂ : obj-Precategory C} - (f : type-hom-Precategory C x₁ y₁) - (g : type-hom-Precategory C x₂ y₂) + (f : hom-Precategory C x₁ y₁) + (g : hom-Precategory C x₂ y₂) where map-product-Precategory : - type-hom-Precategory C + hom-Precategory C (object-product-Precategory C t x₁ x₂) (object-product-Precategory C t y₁ y₂) map-product-Precategory = diff --git a/src/category-theory/products-of-precategories.lagda.md b/src/category-theory/products-of-precategories.lagda.md index fe0e20e903..7a38191f9a 100644 --- a/src/category-theory/products-of-precategories.lagda.md +++ b/src/category-theory/products-of-precategories.lagda.md @@ -39,7 +39,7 @@ module _ Precategory (l1 ⊔ l3) (l2 ⊔ l4) pr1 prod-Precategory = obj-Precategory C × obj-Precategory D pr1 (pr2 prod-Precategory) (x , y) (x' , y') = - prod-Set (hom-Precategory C x x') (hom-Precategory D y y') + prod-Set (hom-set-Precategory C x x') (hom-set-Precategory D y y') pr1 (pr1 (pr1 (pr2 (pr2 prod-Precategory))) (f' , g') (f , g)) = comp-hom-Precategory C f' f pr2 (pr1 (pr1 (pr2 (pr2 prod-Precategory))) (f' , g') (f , g)) = diff --git a/src/category-theory/pullbacks-in-precategories.lagda.md b/src/category-theory/pullbacks-in-precategories.lagda.md index faf2f6890b..a170840a46 100644 --- a/src/category-theory/pullbacks-in-precategories.lagda.md +++ b/src/category-theory/pullbacks-in-precategories.lagda.md @@ -46,60 +46,60 @@ module _ is-pullback-Precategory : (x y z : obj-Precategory C) → - (f : type-hom-Precategory C y x) → - (g : type-hom-Precategory C z x) → + (f : hom-Precategory C y x) → + (g : hom-Precategory C z x) → (w : obj-Precategory C) → - (p₁ : type-hom-Precategory C w y) → - (p₂ : type-hom-Precategory C w z) → + (p₁ : hom-Precategory C w y) → + (p₂ : hom-Precategory C w z) → comp-hom-Precategory C f p₁ = comp-hom-Precategory C g p₂ → UU (l1 ⊔ l2) is-pullback-Precategory x y z f g w p₁ p₂ _ = (w' : obj-Precategory C) → - (p₁' : type-hom-Precategory C w' y) → - (p₂' : type-hom-Precategory C w' z) → + (p₁' : hom-Precategory C w' y) → + (p₂' : hom-Precategory C w' z) → comp-hom-Precategory C f p₁' = comp-hom-Precategory C g p₂' → ∃! - ( type-hom-Precategory C w' w) + ( hom-Precategory C w' w) ( λ h → ( comp-hom-Precategory C p₁ h = p₁') × ( comp-hom-Precategory C p₂ h = p₂')) pullback-Precategory : (x y z : obj-Precategory C) → - type-hom-Precategory C y x → - type-hom-Precategory C z x → + hom-Precategory C y x → + hom-Precategory C z x → UU (l1 ⊔ l2) pullback-Precategory x y z f g = Σ (obj-Precategory C) λ w → - Σ (type-hom-Precategory C w y) λ p₁ → - Σ (type-hom-Precategory C w z) λ p₂ → + Σ (hom-Precategory C w y) λ p₁ → + Σ (hom-Precategory C w z) λ p₂ → Σ (comp-hom-Precategory C f p₁ = comp-hom-Precategory C g p₂) λ α → is-pullback-Precategory x y z f g w p₁ p₂ α has-all-pullback-Precategory : UU (l1 ⊔ l2) has-all-pullback-Precategory = (x y z : obj-Precategory C) → - (f : type-hom-Precategory C y x) → - (g : type-hom-Precategory C z x) → + (f : hom-Precategory C y x) → + (g : hom-Precategory C z x) → pullback-Precategory x y z f g module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-pullback-Precategory C) (x y z : obj-Precategory C) - (f : type-hom-Precategory C y x) - (g : type-hom-Precategory C z x) + (f : hom-Precategory C y x) + (g : hom-Precategory C z x) where object-pullback-Precategory : obj-Precategory C object-pullback-Precategory = pr1 (t x y z f g) pr1-pullback-Precategory : - type-hom-Precategory C object-pullback-Precategory y + hom-Precategory C object-pullback-Precategory y pr1-pullback-Precategory = pr1 (pr2 (t x y z f g)) pr2-pullback-Precategory : - type-hom-Precategory C object-pullback-Precategory z + hom-Precategory C object-pullback-Precategory z pr2-pullback-Precategory = pr1 (pr2 (pr2 (t x y z f g))) pullback-square-Precategory-comm : @@ -109,13 +109,13 @@ module _ module _ (w' : obj-Precategory C) - (p₁' : type-hom-Precategory C w' y) - (p₂' : type-hom-Precategory C w' z) + (p₁' : hom-Precategory C w' y) + (p₂' : hom-Precategory C w' z) (α : comp-hom-Precategory C f p₁' = comp-hom-Precategory C g p₂') where morphism-into-pullback-Precategory : - type-hom-Precategory C w' object-pullback-Precategory + hom-Precategory C w' object-pullback-Precategory morphism-into-pullback-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 (pr2 (t x y z f g)))) w' p₁' p₂' α)) @@ -136,7 +136,7 @@ module _ pr2 (pr2 (pr1 (pr2 (pr2 (pr2 (pr2 (t x y z f g)))) w' p₁' p₂' α))) is-unique-morphism-into-pullback-Precategory : - (h' : type-hom-Precategory C w' object-pullback-Precategory) → + (h' : hom-Precategory C w' object-pullback-Precategory) → comp-hom-Precategory C pr1-pullback-Precategory h' = p₁' → comp-hom-Precategory C pr2-pullback-Precategory h' = p₂' → morphism-into-pullback-Precategory = h' @@ -148,11 +148,11 @@ module _ module _ {l1 l2 : Level} (C : Precategory l1 l2) (x y z : obj-Precategory C) - (f : type-hom-Precategory C y x) - (g : type-hom-Precategory C z x) + (f : hom-Precategory C y x) + (g : hom-Precategory C z x) (w : obj-Precategory C) - (p₁ : type-hom-Precategory C w y) - (p₂ : type-hom-Precategory C w z) + (p₁ : hom-Precategory C w y) + (p₂ : hom-Precategory C w z) (α : comp-hom-Precategory C f p₁ = comp-hom-Precategory C g p₂) where diff --git a/src/category-theory/representable-functors-categories.lagda.md b/src/category-theory/representable-functors-categories.lagda.md index 5ead665ee0..2a0b07f5d5 100644 --- a/src/category-theory/representable-functors-categories.lagda.md +++ b/src/category-theory/representable-functors-categories.lagda.md @@ -55,7 +55,7 @@ components `hom c x → hom b x` are defined by precomposition with `f`. ```agda rep-natural-transformation-Category : {l1 l2 : Level} (C : Category l1 l2) (b c : obj-Category C) - (f : type-hom-Category C b c) → + (f : hom-Category C b c) → natural-transformation-Category ( C) ( Set-Category l2) diff --git a/src/category-theory/representable-functors-precategories.lagda.md b/src/category-theory/representable-functors-precategories.lagda.md index 47d507c5d7..dfa5952b64 100644 --- a/src/category-theory/representable-functors-precategories.lagda.md +++ b/src/category-theory/representable-functors-precategories.lagda.md @@ -41,7 +41,7 @@ associativity and the left unit law for the precategory `C`. representable-functor-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) (c : obj-Precategory C) → functor-Precategory C (Set-Precategory l2) -pr1 (representable-functor-Precategory C c) = hom-Precategory C c +pr1 (representable-functor-Precategory C c) = hom-set-Precategory C c pr1 (pr2 (representable-functor-Precategory C c)) g = postcomp-hom-Precategory C g c pr1 (pr2 (pr2 (representable-functor-Precategory C c))) h g = @@ -60,7 +60,7 @@ components `hom c x → hom b x` are defined by precomposition with `f`. ```agda rep-natural-transformation-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) (b c : obj-Precategory C) - (f : type-hom-Precategory C b c) → + (f : hom-Precategory C b c) → natural-transformation-Precategory ( C) ( Set-Precategory l2) diff --git a/src/category-theory/representing-arrow-category.lagda.md b/src/category-theory/representing-arrow-category.lagda.md index babfe89641..32ad822db0 100644 --- a/src/category-theory/representing-arrow-category.lagda.md +++ b/src/category-theory/representing-arrow-category.lagda.md @@ -49,15 +49,15 @@ implication on the [booleans](foundation.booleans.md). obj-representing-arrow : UU lzero obj-representing-arrow = bool -hom-representing-arrow : +hom-set-representing-arrow : obj-representing-arrow → obj-representing-arrow → Set lzero -hom-representing-arrow true true = unit-Set -hom-representing-arrow true false = empty-Set -hom-representing-arrow false _ = unit-Set +hom-set-representing-arrow true true = unit-Set +hom-set-representing-arrow true false = empty-Set +hom-set-representing-arrow false _ = unit-Set -type-hom-representing-arrow : +hom-representing-arrow : obj-representing-arrow → obj-representing-arrow → UU lzero -type-hom-representing-arrow x y = type-Set (hom-representing-arrow x y) +hom-representing-arrow x y = type-Set (hom-set-representing-arrow x y) ``` ### The precategory structure of the representing arrow @@ -65,51 +65,51 @@ type-hom-representing-arrow x y = type-Set (hom-representing-arrow x y) ```agda comp-hom-representing-arrow : {x y z : obj-representing-arrow} → - type-hom-representing-arrow y z → - type-hom-representing-arrow x y → - type-hom-representing-arrow x z + hom-representing-arrow y z → + hom-representing-arrow x y → + hom-representing-arrow x z comp-hom-representing-arrow {true} {true} {true} _ _ = star comp-hom-representing-arrow {false} _ _ = star associative-comp-hom-representing-arrow : {x y z w : obj-representing-arrow} → - (h : type-hom-representing-arrow z w) - (g : type-hom-representing-arrow y z) - (f : type-hom-representing-arrow x y) → + (h : hom-representing-arrow z w) + (g : hom-representing-arrow y z) + (f : hom-representing-arrow x y) → comp-hom-representing-arrow {x} (comp-hom-representing-arrow {y} h g) f = comp-hom-representing-arrow {x} h (comp-hom-representing-arrow {x} g f) associative-comp-hom-representing-arrow {true} {true} {true} {true} h g f = refl associative-comp-hom-representing-arrow {false} h g f = refl associative-composition-structure-representing-arrow : - associative-composition-structure-Set hom-representing-arrow + associative-composition-structure-Set hom-set-representing-arrow pr1 associative-composition-structure-representing-arrow {x} = comp-hom-representing-arrow {x} pr2 associative-composition-structure-representing-arrow = associative-comp-hom-representing-arrow id-hom-representing-arrow : - {x : obj-representing-arrow} → type-hom-representing-arrow x x + {x : obj-representing-arrow} → hom-representing-arrow x x id-hom-representing-arrow {true} = star id-hom-representing-arrow {false} = star left-unit-law-comp-hom-representing-arrow : {x y : obj-representing-arrow} → - (f : type-hom-representing-arrow x y) → + (f : hom-representing-arrow x y) → comp-hom-representing-arrow {x} (id-hom-representing-arrow {y}) f = f left-unit-law-comp-hom-representing-arrow {true} {true} f = refl left-unit-law-comp-hom-representing-arrow {false} f = refl right-unit-law-comp-hom-representing-arrow : {x y : obj-representing-arrow} → - (f : type-hom-representing-arrow x y) → + (f : hom-representing-arrow x y) → comp-hom-representing-arrow {x} f (id-hom-representing-arrow {x}) = f right-unit-law-comp-hom-representing-arrow {true} {true} f = refl right-unit-law-comp-hom-representing-arrow {false} f = refl is-unital-composition-structure-representing-arrow : is-unital-composition-structure-Set - ( hom-representing-arrow) + ( hom-set-representing-arrow) ( associative-composition-structure-representing-arrow) pr1 is-unital-composition-structure-representing-arrow x = id-hom-representing-arrow {x} @@ -120,7 +120,7 @@ pr2 (pr2 is-unital-composition-structure-representing-arrow) = representing-arrow-Precategory : Precategory lzero lzero pr1 representing-arrow-Precategory = obj-representing-arrow -pr1 (pr2 representing-arrow-Precategory) = hom-representing-arrow +pr1 (pr2 representing-arrow-Precategory) = hom-set-representing-arrow pr1 (pr2 (pr2 representing-arrow-Precategory)) = associative-composition-structure-representing-arrow pr2 (pr2 (pr2 representing-arrow-Precategory)) = diff --git a/src/category-theory/sieves-in-categories.lagda.md b/src/category-theory/sieves-in-categories.lagda.md index fbf6f43982..b03c38c8e2 100644 --- a/src/category-theory/sieves-in-categories.lagda.md +++ b/src/category-theory/sieves-in-categories.lagda.md @@ -37,7 +37,7 @@ module _ is-sieve-Category-Prop : { l3 : Level} ( S : (X Y : obj-Category C) → - subtype l3 (type-hom-Category C X Y)) → Prop (l1 ⊔ l2 ⊔ l3) + subtype l3 (hom-Category C X Y)) → Prop (l1 ⊔ l2 ⊔ l3) is-sieve-Category-Prop S = Π-Prop ( obj-Category C) @@ -52,7 +52,7 @@ module _ ( type-subtype (S Y X)) ( λ f → Π-Prop - ( type-hom-Category C Z Y) + ( hom-Category C Z Y) ( λ g → S Z X ( comp-hom-Category @@ -61,12 +61,12 @@ module _ is-sieve-Category : { l3 : Level} ( S : (X Y : obj-Category C) → - subtype l3 (type-hom-Category C X Y)) → UU (l1 ⊔ l2 ⊔ l3) + subtype l3 (hom-Category C X Y)) → UU (l1 ⊔ l2 ⊔ l3) is-sieve-Category S = type-Prop (is-sieve-Category-Prop S) is-prop-is-sieve-Category : { l3 : Level} - ( S : (X Y : obj-Category C) → subtype l3 (type-hom-Category C X Y)) → + ( S : (X Y : obj-Category C) → subtype l3 (hom-Category C X Y)) → is-prop (is-sieve-Category S) is-prop-is-sieve-Category S = is-prop-type-Prop (is-sieve-Category-Prop S) ``` diff --git a/src/category-theory/slice-precategories.lagda.md b/src/category-theory/slice-precategories.lagda.md index c30c46ded4..bda00ed05f 100644 --- a/src/category-theory/slice-precategories.lagda.md +++ b/src/category-theory/slice-precategories.lagda.md @@ -46,48 +46,49 @@ module _ obj-Slice-Precategory : UU (l1 ⊔ l2) obj-Slice-Precategory = - Σ (obj-Precategory C) (λ A → type-hom-Precategory C A X) + Σ (obj-Precategory C) (λ A → hom-Precategory C A X) - hom-Slice-Precategory : obj-Slice-Precategory → obj-Slice-Precategory → Set l2 - hom-Slice-Precategory (A , f) (B , g) = + hom-set-Slice-Precategory : + obj-Slice-Precategory → obj-Slice-Precategory → Set l2 + hom-set-Slice-Precategory (A , f) (B , g) = Σ-Set - ( hom-Precategory C A B) + ( hom-set-Precategory C A B) ( λ h → set-Prop - ( Id-Prop (hom-Precategory C A X) f (comp-hom-Precategory C g h))) + ( Id-Prop (hom-set-Precategory C A X) f (comp-hom-Precategory C g h))) - type-hom-Slice-Precategory : + hom-Slice-Precategory : obj-Slice-Precategory → obj-Slice-Precategory → UU l2 - type-hom-Slice-Precategory A B = type-Set (hom-Slice-Precategory A B) + hom-Slice-Precategory A B = type-Set (hom-set-Slice-Precategory A B) - is-set-type-hom-Slice-Precategory : - (A B : obj-Slice-Precategory) → is-set (type-hom-Slice-Precategory A B) - is-set-type-hom-Slice-Precategory A B = - is-set-type-Set (hom-Slice-Precategory A B) + is-set-hom-Slice-Precategory : + (A B : obj-Slice-Precategory) → is-set (hom-Slice-Precategory A B) + is-set-hom-Slice-Precategory A B = + is-set-type-Set (hom-set-Slice-Precategory A B) Eq-hom-Slice-Precategory : {A B : obj-Slice-Precategory} - (f g : type-hom-Slice-Precategory A B) → UU l2 + (f g : hom-Slice-Precategory A B) → UU l2 Eq-hom-Slice-Precategory f g = (pr1 f = pr1 g) refl-Eq-hom-Slice-Precategory : - {A B : obj-Slice-Precategory} (f : type-hom-Slice-Precategory A B) → + {A B : obj-Slice-Precategory} (f : hom-Slice-Precategory A B) → Eq-hom-Slice-Precategory f f refl-Eq-hom-Slice-Precategory f = refl extensionality-hom-Slice-Precategory : - {A B : obj-Slice-Precategory} (f g : type-hom-Slice-Precategory A B) → + {A B : obj-Slice-Precategory} (f g : hom-Slice-Precategory A B) → (f = g) ≃ Eq-hom-Slice-Precategory f g extensionality-hom-Slice-Precategory {A} {B} = extensionality-type-subtype' ( λ h → Id-Prop - ( hom-Precategory C (pr1 A) X) + ( hom-set-Precategory C (pr1 A) X) ( pr2 A) ( comp-hom-Precategory C (pr2 B) h)) eq-hom-Slice-Precategory : - {A B : obj-Slice-Precategory} (f g : type-hom-Slice-Precategory A B) → + {A B : obj-Slice-Precategory} (f g : hom-Slice-Precategory A B) → Eq-hom-Slice-Precategory f g → f = g eq-hom-Slice-Precategory f g = map-inv-equiv (extensionality-hom-Slice-Precategory f g) @@ -97,7 +98,7 @@ module _ ```agda id-hom-Slice-Precategory : - (A : obj-Slice-Precategory) → type-hom-Slice-Precategory A A + (A : obj-Slice-Precategory) → hom-Slice-Precategory A A pr1 (id-hom-Slice-Precategory A) = id-hom-Precategory C pr2 (id-hom-Slice-Precategory A) = inv (right-unit-law-comp-hom-Precategory C (pr2 A)) @@ -108,8 +109,8 @@ module _ ```agda comp-hom-Slice-Precategory : {A1 A2 A3 : obj-Slice-Precategory} → - type-hom-Slice-Precategory A2 A3 → type-hom-Slice-Precategory A1 A2 → - type-hom-Slice-Precategory A1 A3 + hom-Slice-Precategory A2 A3 → hom-Slice-Precategory A1 A2 → + hom-Slice-Precategory A1 A3 pr1 (comp-hom-Slice-Precategory g f) = comp-hom-Precategory C (pr1 g) (pr1 f) pr2 (comp-hom-Slice-Precategory g f) = ( pr2 f) ∙ @@ -122,9 +123,9 @@ module _ ```agda associative-comp-hom-Slice-Precategory : {A1 A2 A3 A4 : obj-Slice-Precategory} → - (h : type-hom-Slice-Precategory A3 A4) - (g : type-hom-Slice-Precategory A2 A3) - (f : type-hom-Slice-Precategory A1 A2) → + (h : hom-Slice-Precategory A3 A4) + (g : hom-Slice-Precategory A2 A3) + (f : hom-Slice-Precategory A1 A2) → ( comp-hom-Slice-Precategory (comp-hom-Slice-Precategory h g) f) = ( comp-hom-Slice-Precategory h (comp-hom-Slice-Precategory g f)) associative-comp-hom-Slice-Precategory h g f = @@ -138,7 +139,7 @@ module _ ```agda left-unit-law-comp-hom-Slice-Precategory : - {A B : obj-Slice-Precategory} (f : type-hom-Slice-Precategory A B) → + {A B : obj-Slice-Precategory} (f : hom-Slice-Precategory A B) → comp-hom-Slice-Precategory (id-hom-Slice-Precategory B) f = f left-unit-law-comp-hom-Slice-Precategory f = eq-hom-Slice-Precategory @@ -151,7 +152,7 @@ module _ ```agda right-unit-law-comp-hom-Slice-Precategory : - {A B : obj-Slice-Precategory} (f : type-hom-Slice-Precategory A B) → + {A B : obj-Slice-Precategory} (f : hom-Slice-Precategory A B) → comp-hom-Slice-Precategory f (id-hom-Slice-Precategory A) = f right-unit-law-comp-hom-Slice-Precategory f = eq-hom-Slice-Precategory @@ -165,7 +166,7 @@ module _ ```agda Slice-Precategory : Precategory (l1 ⊔ l2) l2 pr1 Slice-Precategory = obj-Slice-Precategory - pr1 (pr2 Slice-Precategory) = hom-Slice-Precategory + pr1 (pr2 Slice-Precategory) = hom-set-Slice-Precategory pr1 (pr1 (pr2 (pr2 Slice-Precategory))) = comp-hom-Slice-Precategory pr2 (pr1 (pr2 (pr2 Slice-Precategory))) = associative-comp-hom-Slice-Precategory @@ -193,7 +194,7 @@ module _ pr1 terminal-obj-Precategory-Slice-Precategory = (X , id-hom-Precategory C) pr2 terminal-obj-Precategory-Slice-Precategory (A , f) = is-contr-equiv - ( Σ (type-hom-Precategory C A X) (λ g → f = g)) + ( Σ (hom-Precategory C A X) (λ g → f = g)) ( equiv-tot ( λ g → equiv-concat' f (left-unit-law-comp-hom-Precategory C g))) ( is-contr-total-path f) @@ -204,13 +205,13 @@ module _ ```agda module _ {l1 l2 : Level} (C : Precategory l1 l2) {A X Y : obj-Precategory C} - (f : type-hom-Precategory C X A) (g : type-hom-Precategory C Y A) + (f : hom-Precategory C X A) (g : hom-Precategory C Y A) where module _ {W : obj-Precategory C} - (p₁ : type-hom-Precategory C W X) (p₂ : type-hom-Precategory C W Y) - (p : type-hom-Precategory C W A) + (p₁ : hom-Precategory C W X) (p₂ : hom-Precategory C W Y) + (p : hom-Precategory C W A) (α₁ : p = comp-hom-Precategory C f p₁) (α₂ : p = comp-hom-Precategory C g p₂) (α : comp-hom-Precategory C f p₁ = comp-hom-Precategory C g p₂) @@ -225,7 +226,7 @@ module _ is-contr-Σ-is-prop c d q σ where c : - type-hom-Precategory + hom-Precategory ( Slice-Precategory C A) ( Z , comp-hom-Precategory C f h₁) ( W , p) @@ -258,8 +259,8 @@ module _ (Slice-Precategory C A) (p₂ , α₂) k = (h₂ , β₂))) q k = is-prop-prod - ( is-set-type-Set (hom-Slice-Precategory C A _ _) _ _) - ( is-set-type-Set (hom-Slice-Precategory C A _ _) _ _) + ( is-set-type-Set (hom-set-Slice-Precategory C A _ _) _ _) + ( is-set-type-Set (hom-set-Slice-Precategory C A _ _) _ _) σ : ∀ k → @@ -285,7 +286,7 @@ module _ map-inv-is-pullback-is-product-Slice-Precategory ψ W' p₁' p₂' α' = is-contr-Σ-is-prop k γ q σ where - k : type-hom-Precategory C W' W + k : hom-Precategory C W' W k = pr1 ( pr1 @@ -324,11 +325,11 @@ module _ ( comp-hom-Precategory C p₂ k' = p₂')) q k' = is-prop-prod - ( is-set-type-Set (hom-Precategory C _ _) _ _) - ( is-set-type-Set (hom-Precategory C _ _) _ _) + ( is-set-type-Set (hom-set-Precategory C _ _) _ _) + ( is-set-type-Set (hom-set-Precategory C _ _) _ _) σ : - ( k' : type-hom-Precategory C W' W) → + ( k' : hom-Precategory C W' W) → ( γ' : ( comp-hom-Precategory C p₁ k' = p₁') × ( comp-hom-Precategory C p₂ k' = p₂')) → diff --git a/src/category-theory/terminal-objects-precategories.lagda.md b/src/category-theory/terminal-objects-precategories.lagda.md index 6e4d638bea..22d9b360c7 100644 --- a/src/category-theory/terminal-objects-precategories.lagda.md +++ b/src/category-theory/terminal-objects-precategories.lagda.md @@ -34,7 +34,7 @@ object. is-terminal-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → obj-Precategory C → UU (l1 ⊔ l2) is-terminal-obj-Precategory C x = - (y : obj-Precategory C) → is-contr (type-hom-Precategory C y x) + (y : obj-Precategory C) → is-contr (hom-Precategory C y x) module _ {l1 l2 : Level} (C : Precategory l1 l2) @@ -44,12 +44,12 @@ module _ hom-is-terminal-obj-Precategory : (y : obj-Precategory C) → - type-hom-Precategory C y x + hom-Precategory C y x hom-is-terminal-obj-Precategory = center ∘ t is-unique-hom-is-terminal-obj-Precategory : (y : obj-Precategory C) → - (f : type-hom-Precategory C y x) → + (f : hom-Precategory C y x) → hom-is-terminal-obj-Precategory y = f is-unique-hom-is-terminal-obj-Precategory = contraction ∘ t ``` @@ -77,7 +77,7 @@ module _ hom-terminal-obj-Precategory : (y : obj-Precategory C) → - type-hom-Precategory C y obj-terminal-obj-Precategory + hom-Precategory C y obj-terminal-obj-Precategory hom-terminal-obj-Precategory = hom-is-terminal-obj-Precategory C ( obj-terminal-obj-Precategory) @@ -85,7 +85,7 @@ module _ is-unique-hom-terminal-obj-Precategory : (y : obj-Precategory C) → - (f : type-hom-Precategory C y obj-terminal-obj-Precategory) → + (f : hom-Precategory C y obj-terminal-obj-Precategory) → hom-terminal-obj-Precategory y = f is-unique-hom-terminal-obj-Precategory = is-unique-hom-is-terminal-obj-Precategory C diff --git a/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md b/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md index 4a0e88a29e..35d86daf5b 100644 --- a/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md +++ b/src/commutative-algebra/groups-of-units-commutative-rings.lagda.md @@ -311,10 +311,10 @@ group-of-units-commutative-ring-functor-Large-Precategory : ( Commutative-Ring-Large-Precategory) ( Ab-Large-Precategory) ( id) -obj-functor-Large-Precategory +map-obj-functor-Large-Precategory group-of-units-commutative-ring-functor-Large-Precategory = abelian-group-of-units-Commutative-Ring -hom-functor-Large-Precategory +map-hom-functor-Large-Precategory group-of-units-commutative-ring-functor-Large-Precategory {X = A} {Y = B} = hom-group-of-units-hom-Commutative-Ring A B preserves-comp-functor-Large-Precategory diff --git a/src/commutative-algebra/homomorphisms-commutative-rings.lagda.md b/src/commutative-algebra/homomorphisms-commutative-rings.lagda.md index f61e521010..3201fe380c 100644 --- a/src/commutative-algebra/homomorphisms-commutative-rings.lagda.md +++ b/src/commutative-algebra/homomorphisms-commutative-rings.lagda.md @@ -69,9 +69,9 @@ module _ {l1 l2 : Level} (A : Commutative-Ring l1) (B : Commutative-Ring l2) where - hom-Commutative-Ring : Set (l1 ⊔ l2) - hom-Commutative-Ring = - hom-Ring (ring-Commutative-Ring A) (ring-Commutative-Ring B) + hom-set-Commutative-Ring : Set (l1 ⊔ l2) + hom-set-Commutative-Ring = + hom-set-Ring (ring-Commutative-Ring A) (ring-Commutative-Ring B) type-hom-Commutative-Ring : UU (l1 ⊔ l2) type-hom-Commutative-Ring = diff --git a/src/commutative-algebra/homomorphisms-commutative-semirings.lagda.md b/src/commutative-algebra/homomorphisms-commutative-semirings.lagda.md index 60139afbfd..57ad242a0b 100644 --- a/src/commutative-algebra/homomorphisms-commutative-semirings.lagda.md +++ b/src/commutative-algebra/homomorphisms-commutative-semirings.lagda.md @@ -36,9 +36,9 @@ module _ {l1 l2 : Level} (A : Commutative-Semiring l1) (B : Commutative-Semiring l2) where - hom-Commutative-Semiring : Set (l1 ⊔ l2) - hom-Commutative-Semiring = - hom-Semiring + hom-set-Commutative-Semiring : Set (l1 ⊔ l2) + hom-set-Commutative-Semiring = + hom-set-Semiring ( semiring-Commutative-Semiring A) ( semiring-Commutative-Semiring B) diff --git a/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md b/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md index 78b25c085f..974e3b3e61 100644 --- a/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md +++ b/src/commutative-algebra/poset-of-radical-ideals-commutative-rings.lagda.md @@ -180,7 +180,7 @@ module _ preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H ideal-radical-ideal-hom-large-poset-Commutative-Ring : - hom-Large-Poset id + hom-set-Large-Poset id ( radical-ideal-Commutative-Ring-Large-Poset A) ( ideal-Commutative-Ring-Large-Poset A) map-hom-Large-Preorder diff --git a/src/commutative-algebra/precategory-of-commutative-rings.lagda.md b/src/commutative-algebra/precategory-of-commutative-rings.lagda.md index b95d978e93..f7e1024b3b 100644 --- a/src/commutative-algebra/precategory-of-commutative-rings.lagda.md +++ b/src/commutative-algebra/precategory-of-commutative-rings.lagda.md @@ -32,9 +32,9 @@ Commutative-Ring-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Commutative-Ring-Large-Precategory = Commutative-Ring -hom-Large-Precategory +hom-set-Large-Precategory Commutative-Ring-Large-Precategory = - hom-Commutative-Ring + hom-set-Commutative-Ring comp-hom-Large-Precategory Commutative-Ring-Large-Precategory {X = A} {B} {C} = comp-hom-Commutative-Ring A B C diff --git a/src/commutative-algebra/precategory-of-commutative-semirings.lagda.md b/src/commutative-algebra/precategory-of-commutative-semirings.lagda.md index 6c944c5a7d..a8e99a50cf 100644 --- a/src/commutative-algebra/precategory-of-commutative-semirings.lagda.md +++ b/src/commutative-algebra/precategory-of-commutative-semirings.lagda.md @@ -32,9 +32,9 @@ Commutative-Semiring-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Commutative-Semiring-Large-Precategory = Commutative-Semiring -hom-Large-Precategory +hom-set-Large-Precategory Commutative-Semiring-Large-Precategory = - hom-Commutative-Semiring + hom-set-Commutative-Semiring comp-hom-Large-Precategory Commutative-Semiring-Large-Precategory {X = A} {B} {C} = comp-hom-Commutative-Semiring A B C diff --git a/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md b/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md index c328c9d0af..b954547a45 100644 --- a/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md +++ b/src/commutative-algebra/radicals-of-ideals-commutative-rings.lagda.md @@ -238,7 +238,7 @@ module _ ( H)) radical-of-ideal-hom-large-poset-Commutative-Ring : - hom-Large-Poset id + hom-set-Large-Poset id ( ideal-Commutative-Ring-Large-Poset A) ( radical-ideal-Commutative-Ring-Large-Poset A) map-hom-Large-Preorder diff --git a/src/finite-algebra/homomorphisms-commutative-finite-rings.lagda.md b/src/finite-algebra/homomorphisms-commutative-finite-rings.lagda.md index 4e92d05ad0..95c124def9 100644 --- a/src/finite-algebra/homomorphisms-commutative-finite-rings.lagda.md +++ b/src/finite-algebra/homomorphisms-commutative-finite-rings.lagda.md @@ -76,9 +76,9 @@ module _ {l1 l2 : Level} (A : Commutative-Ring-𝔽 l1) (B : Commutative-Ring-𝔽 l2) where - hom-Commutative-Ring-𝔽 : Set (l1 ⊔ l2) - hom-Commutative-Ring-𝔽 = - hom-Ring (ring-Commutative-Ring-𝔽 A) (ring-Commutative-Ring-𝔽 B) + hom-set-Commutative-Ring-𝔽 : Set (l1 ⊔ l2) + hom-set-Commutative-Ring-𝔽 = + hom-set-Ring (ring-Commutative-Ring-𝔽 A) (ring-Commutative-Ring-𝔽 B) type-hom-Commutative-Ring-𝔽 : UU (l1 ⊔ l2) type-hom-Commutative-Ring-𝔽 = diff --git a/src/finite-algebra/homomorphisms-finite-rings.lagda.md b/src/finite-algebra/homomorphisms-finite-rings.lagda.md index 7af69e025b..dbcfbfdf9b 100644 --- a/src/finite-algebra/homomorphisms-finite-rings.lagda.md +++ b/src/finite-algebra/homomorphisms-finite-rings.lagda.md @@ -64,9 +64,9 @@ module _ {l1 l2 : Level} (A : Ring-𝔽 l1) (B : Ring-𝔽 l2) where - hom-Ring-𝔽 : Set (l1 ⊔ l2) - hom-Ring-𝔽 = - hom-Ring (ring-Ring-𝔽 A) (ring-Ring-𝔽 B) + hom-set-Ring-𝔽 : Set (l1 ⊔ l2) + hom-set-Ring-𝔽 = + hom-set-Ring (ring-Ring-𝔽 A) (ring-Ring-𝔽 B) type-hom-Ring-𝔽 : UU (l1 ⊔ l2) type-hom-Ring-𝔽 = diff --git a/src/foundation/category-of-sets.lagda.md b/src/foundation/category-of-sets.lagda.md index d0fcdcfb9a..34d3b3d72a 100644 --- a/src/foundation/category-of-sets.lagda.md +++ b/src/foundation/category-of-sets.lagda.md @@ -39,7 +39,7 @@ sets for each universe level, and there is a large category of sets. ```agda Set-Large-Precategory : Large-Precategory lsuc (_⊔_) obj-Large-Precategory Set-Large-Precategory = Set -hom-Large-Precategory Set-Large-Precategory = hom-Set +hom-set-Large-Precategory Set-Large-Precategory = hom-Set comp-hom-Large-Precategory Set-Large-Precategory g f = g ∘ f id-hom-Large-Precategory Set-Large-Precategory = id associative-comp-hom-Large-Precategory Set-Large-Precategory h g f = refl diff --git a/src/group-theory/addition-homomorphisms-abelian-groups.lagda.md b/src/group-theory/addition-homomorphisms-abelian-groups.lagda.md index e3f5aaef36..6c7d6674f5 100644 --- a/src/group-theory/addition-homomorphisms-abelian-groups.lagda.md +++ b/src/group-theory/addition-homomorphisms-abelian-groups.lagda.md @@ -141,7 +141,7 @@ module _ where semigroup-hom-Ab : Semigroup (l1 ⊔ l2) - pr1 semigroup-hom-Ab = hom-Ab A B + pr1 semigroup-hom-Ab = hom-set-Ab A B pr1 (pr2 semigroup-hom-Ab) = add-hom-Ab A B pr2 (pr2 semigroup-hom-Ab) = associative-add-hom-Ab A B diff --git a/src/group-theory/cores-monoids.lagda.md b/src/group-theory/cores-monoids.lagda.md index 18f6ea2acb..cb4cd809b5 100644 --- a/src/group-theory/cores-monoids.lagda.md +++ b/src/group-theory/cores-monoids.lagda.md @@ -227,10 +227,10 @@ module _ ```agda core-monoid-functor-Large-Precategory : functor-Large-Precategory Monoid-Large-Precategory Group-Large-Precategory id -obj-functor-Large-Precategory +map-obj-functor-Large-Precategory core-monoid-functor-Large-Precategory = core-Monoid -hom-functor-Large-Precategory +map-hom-functor-Large-Precategory core-monoid-functor-Large-Precategory {X = M} {Y = N} = hom-core-hom-Monoid M N preserves-comp-functor-Large-Precategory diff --git a/src/group-theory/epimorphisms-groups.lagda.md b/src/group-theory/epimorphisms-groups.lagda.md index 1071f4fe92..a37e3f5d66 100644 --- a/src/group-theory/epimorphisms-groups.lagda.md +++ b/src/group-theory/epimorphisms-groups.lagda.md @@ -26,7 +26,7 @@ A [group homomorphism](group-theory.homomorphisms-groups.md) `f : G → H` is an **epimorphism** if the precomposition function ```text - - ∘ f : hom-Group H K → hom-Group G K + - ∘ f : hom-set-Group H K → hom-set-Group G K ``` is an [embedding](foundation.embeddings.md) for any diff --git a/src/group-theory/homomorphisms-abelian-groups.lagda.md b/src/group-theory/homomorphisms-abelian-groups.lagda.md index 83d772abab..b5d7daf939 100644 --- a/src/group-theory/homomorphisms-abelian-groups.lagda.md +++ b/src/group-theory/homomorphisms-abelian-groups.lagda.md @@ -38,8 +38,8 @@ module _ preserves-add-Ab : (type-Ab A → type-Ab B) → UU (l1 ⊔ l2) preserves-add-Ab = preserves-mul-Semigroup (semigroup-Ab A) (semigroup-Ab B) - hom-Ab : Set (l1 ⊔ l2) - hom-Ab = hom-Group (group-Ab A) (group-Ab B) + hom-set-Ab : Set (l1 ⊔ l2) + hom-set-Ab = hom-set-Group (group-Ab A) (group-Ab B) type-hom-Ab : UU (l1 ⊔ l2) type-hom-Ab = type-hom-Group (group-Ab A) (group-Ab B) diff --git a/src/group-theory/homomorphisms-commutative-monoids.lagda.md b/src/group-theory/homomorphisms-commutative-monoids.lagda.md index f15680d9ca..64463ecde6 100644 --- a/src/group-theory/homomorphisms-commutative-monoids.lagda.md +++ b/src/group-theory/homomorphisms-commutative-monoids.lagda.md @@ -35,9 +35,9 @@ module _ {l1 l2 : Level} (M1 : Commutative-Monoid l1) (M2 : Commutative-Monoid l2) where - hom-Commutative-Monoid : Set (l1 ⊔ l2) - hom-Commutative-Monoid = - hom-Monoid (monoid-Commutative-Monoid M1) (monoid-Commutative-Monoid M2) + hom-set-Commutative-Monoid : Set (l1 ⊔ l2) + hom-set-Commutative-Monoid = + hom-set-Monoid (monoid-Commutative-Monoid M1) (monoid-Commutative-Monoid M2) type-hom-Commutative-Monoid : UU (l1 ⊔ l2) type-hom-Commutative-Monoid = diff --git a/src/group-theory/homomorphisms-concrete-groups.lagda.md b/src/group-theory/homomorphisms-concrete-groups.lagda.md index 66cc0b9f9b..bbc3ba7919 100644 --- a/src/group-theory/homomorphisms-concrete-groups.lagda.md +++ b/src/group-theory/homomorphisms-concrete-groups.lagda.md @@ -45,9 +45,6 @@ module _ pr1 hom-set-Concrete-Group = hom-Concrete-Group pr2 hom-set-Concrete-Group = is-set-hom-Concrete-Group - hom-Concrete-Group-Set : Set (l1 ⊔ l2) - hom-Concrete-Group-Set = pair hom-Concrete-Group is-set-hom-Concrete-Group - classifying-map-hom-Concrete-Group : hom-Concrete-Group → classifying-type-Concrete-Group G → classifying-type-Concrete-Group H diff --git a/src/group-theory/homomorphisms-group-actions.lagda.md b/src/group-theory/homomorphisms-group-actions.lagda.md index dcae0863c5..259b3bb474 100644 --- a/src/group-theory/homomorphisms-group-actions.lagda.md +++ b/src/group-theory/homomorphisms-group-actions.lagda.md @@ -191,9 +191,9 @@ module _ ( map-hom-Abstract-Group-Action G X Y f x) ( map-hom-Abstract-Group-Action G X Y g x))) - hom-Abstract-Group-Action : Set (l1 ⊔ l2 ⊔ l3) - pr1 hom-Abstract-Group-Action = type-hom-Abstract-Group-Action G X Y - pr2 hom-Abstract-Group-Action = is-set-type-hom-Abstract-Group-Action + hom-set-Abstract-Group-Action : Set (l1 ⊔ l2 ⊔ l3) + pr1 hom-set-Abstract-Group-Action = type-hom-Abstract-Group-Action G X Y + pr2 hom-set-Abstract-Group-Action = is-set-type-hom-Abstract-Group-Action ``` ### Composition is associative diff --git a/src/group-theory/homomorphisms-groups.lagda.md b/src/group-theory/homomorphisms-groups.lagda.md index 6fcda8d5ec..73a0af10c3 100644 --- a/src/group-theory/homomorphisms-groups.lagda.md +++ b/src/group-theory/homomorphisms-groups.lagda.md @@ -136,9 +136,9 @@ module _ is-set-type-hom-Group = is-set-type-hom-Semigroup (semigroup-Group G) (semigroup-Group H) - hom-Group : Set (l1 ⊔ l2) - pr1 hom-Group = type-hom-Group G H - pr2 hom-Group = is-set-type-hom-Group + hom-set-Group : Set (l1 ⊔ l2) + pr1 hom-set-Group = type-hom-Group G H + pr2 hom-set-Group = is-set-type-hom-Group ``` ### Associativity of composition of group homomorphisms diff --git a/src/group-theory/homomorphisms-monoids.lagda.md b/src/group-theory/homomorphisms-monoids.lagda.md index f42a56e160..794c352ae1 100644 --- a/src/group-theory/homomorphisms-monoids.lagda.md +++ b/src/group-theory/homomorphisms-monoids.lagda.md @@ -66,14 +66,14 @@ module _ is-prop-preserves-unit-hom-Semigroup f = is-prop-type-Prop (preserves-unit-hom-semigroup-Prop f) - hom-Monoid : Set (l1 ⊔ l2) - hom-Monoid = + hom-set-Monoid : Set (l1 ⊔ l2) + hom-set-Monoid = set-subset - ( hom-Semigroup (semigroup-Monoid M1) (semigroup-Monoid M2)) + ( hom-set-Semigroup (semigroup-Monoid M1) (semigroup-Monoid M2)) ( preserves-unit-hom-semigroup-Prop) type-hom-Monoid : UU (l1 ⊔ l2) - type-hom-Monoid = type-Set hom-Monoid + type-hom-Monoid = type-Set hom-set-Monoid module _ {l1 l2 : Level} (M : Monoid l1) (N : Monoid l2) (f : type-hom-Monoid M N) diff --git a/src/group-theory/homomorphisms-semigroups.lagda.md b/src/group-theory/homomorphisms-semigroups.lagda.md index 11c7b0856d..93a5d9f3f1 100644 --- a/src/group-theory/homomorphisms-semigroups.lagda.md +++ b/src/group-theory/homomorphisms-semigroups.lagda.md @@ -157,9 +157,9 @@ module _ ( map-hom-Semigroup f x) ( map-hom-Semigroup g x))) - hom-Semigroup : Set (l1 ⊔ l2) - pr1 hom-Semigroup = type-hom-Semigroup - pr2 hom-Semigroup = is-set-type-hom-Semigroup + hom-set-Semigroup : Set (l1 ⊔ l2) + pr1 hom-set-Semigroup = type-hom-Semigroup + pr2 hom-set-Semigroup = is-set-type-hom-Semigroup preserves-mul-id-Semigroup : {l : Level} (G : Semigroup l) → preserves-mul-Semigroup G G id diff --git a/src/group-theory/isomorphisms-monoids.lagda.md b/src/group-theory/isomorphisms-monoids.lagda.md index e764ba3b8a..4908991d69 100644 --- a/src/group-theory/isomorphisms-monoids.lagda.md +++ b/src/group-theory/isomorphisms-monoids.lagda.md @@ -106,7 +106,7 @@ module _ (f : iso-Monoid) → is-iso-hom-Monoid M N (hom-iso-Monoid f) is-iso-iso-Monoid = - is-iso-iso-Large-Precategory Monoid-Large-Precategory {X = M} {Y = N} + is-iso-hom-iso-Large-Precategory Monoid-Large-Precategory {X = M} {Y = N} hom-inv-iso-Monoid : iso-Monoid → type-hom-Monoid N M @@ -222,7 +222,6 @@ module _ ( Monoid-Large-Precategory) { X = M} { Y = N} - is-iso-prop-hom-Monoid : (f : type-hom-Monoid M N) → Prop (l1 ⊔ l2) is-iso-prop-hom-Monoid = @@ -244,7 +243,8 @@ module _ is-set-iso-Large-Precategory Monoid-Large-Precategory {X = M} {Y = N} iso-set-Monoid : Set (l1 ⊔ l2) - iso-set-Monoid = iso-set-Large-Precategory Monoid-Large-Precategory M N + iso-set-Monoid = + iso-set-Large-Precategory Monoid-Large-Precategory {X = M} {Y = N} ``` ### Isomorphisms are stable by composition diff --git a/src/group-theory/normal-closures-subgroups.lagda.md b/src/group-theory/normal-closures-subgroups.lagda.md index a545d8c676..29990ecd76 100644 --- a/src/group-theory/normal-closures-subgroups.lagda.md +++ b/src/group-theory/normal-closures-subgroups.lagda.md @@ -236,7 +236,7 @@ module _ ( u)) normal-closure-subgroup-hom-Large-Poset : - hom-Large-Poset + hom-set-Large-Poset ( λ l2 → l1 ⊔ l2) ( Subgroup-Large-Poset G) ( Normal-Subgroup-Large-Poset G) diff --git a/src/group-theory/normal-cores-subgroups.lagda.md b/src/group-theory/normal-cores-subgroups.lagda.md index 90aca9f718..5005868a47 100644 --- a/src/group-theory/normal-cores-subgroups.lagda.md +++ b/src/group-theory/normal-cores-subgroups.lagda.md @@ -213,7 +213,7 @@ module _ ( is-contained-in-subgroup-normal-core-Subgroup G H)) normal-core-subgroup-hom-Large-Poset : - hom-Large-Poset + hom-set-Large-Poset ( λ l2 → l1 ⊔ l2) ( Subgroup-Large-Poset G) ( Normal-Subgroup-Large-Poset G) diff --git a/src/group-theory/normal-subgroups.lagda.md b/src/group-theory/normal-subgroups.lagda.md index 39c1293188..b701eb644f 100644 --- a/src/group-theory/normal-subgroups.lagda.md +++ b/src/group-theory/normal-subgroups.lagda.md @@ -382,7 +382,9 @@ preserves-order-subgroup-Normal-Subgroup G N M = id subgroup-normal-subgroup-hom-Large-Poset : {l1 : Level} (G : Group l1) → - hom-Large-Poset id (Normal-Subgroup-Large-Poset G) (Subgroup-Large-Poset G) + hom-set-Large-Poset id + ( Normal-Subgroup-Large-Poset G) + ( Subgroup-Large-Poset G) subgroup-normal-subgroup-hom-Large-Poset G = make-hom-Large-Preorder ( subgroup-Normal-Subgroup G) diff --git a/src/group-theory/precategory-of-abelian-groups.lagda.md b/src/group-theory/precategory-of-abelian-groups.lagda.md index fc5ffd415a..60d38dbcce 100644 --- a/src/group-theory/precategory-of-abelian-groups.lagda.md +++ b/src/group-theory/precategory-of-abelian-groups.lagda.md @@ -32,9 +32,9 @@ Ab-Large-Precategory : Large-Precategory lsuc (_⊔_) Large-Precategory.obj-Large-Precategory Ab-Large-Precategory = Ab -Large-Precategory.hom-Large-Precategory +Large-Precategory.hom-set-Large-Precategory Ab-Large-Precategory = - hom-Ab + hom-set-Ab Large-Precategory.comp-hom-Large-Precategory Ab-Large-Precategory {X = A} {B} {C} = comp-hom-Ab A B C diff --git a/src/group-theory/precategory-of-commutative-monoids.lagda.md b/src/group-theory/precategory-of-commutative-monoids.lagda.md index a5cab0d1ca..19b5610636 100644 --- a/src/group-theory/precategory-of-commutative-monoids.lagda.md +++ b/src/group-theory/precategory-of-commutative-monoids.lagda.md @@ -31,9 +31,9 @@ Commutative-Monoid-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Commutative-Monoid-Large-Precategory = Commutative-Monoid -hom-Large-Precategory +hom-set-Large-Precategory Commutative-Monoid-Large-Precategory = - hom-Commutative-Monoid + hom-set-Commutative-Monoid comp-hom-Large-Precategory Commutative-Monoid-Large-Precategory {X = K} {L} {M} = comp-hom-Commutative-Monoid K L M diff --git a/src/group-theory/precategory-of-concrete-groups.lagda.md b/src/group-theory/precategory-of-concrete-groups.lagda.md index 840b77fee7..93140e428f 100644 --- a/src/group-theory/precategory-of-concrete-groups.lagda.md +++ b/src/group-theory/precategory-of-concrete-groups.lagda.md @@ -26,7 +26,7 @@ Concrete-Group-Large-Precategory : Large-Precategory lsuc (_⊔_) obj-Large-Precategory Concrete-Group-Large-Precategory = Concrete-Group -hom-Large-Precategory +hom-set-Large-Precategory Concrete-Group-Large-Precategory = hom-set-Concrete-Group comp-hom-Large-Precategory diff --git a/src/group-theory/precategory-of-group-actions.lagda.md b/src/group-theory/precategory-of-group-actions.lagda.md index 954f515f7a..ebd561b72f 100644 --- a/src/group-theory/precategory-of-group-actions.lagda.md +++ b/src/group-theory/precategory-of-group-actions.lagda.md @@ -34,9 +34,9 @@ module _ obj-Large-Precategory Abstract-Group-Action-Large-Precategory = Abstract-Group-Action G - hom-Large-Precategory + hom-set-Large-Precategory Abstract-Group-Action-Large-Precategory = - hom-Abstract-Group-Action G + hom-set-Abstract-Group-Action G comp-hom-Large-Precategory Abstract-Group-Action-Large-Precategory {X = X} {Y} {Z} = comp-hom-Abstract-Group-Action G X Y Z @@ -64,7 +64,8 @@ module _ Abstract-Group-Action-Precategory : (l2 : Level) → Precategory (l1 ⊔ lsuc l2) (l1 ⊔ l2) pr1 (Abstract-Group-Action-Precategory l2) = Abstract-Group-Action G l2 - pr1 (pr2 (Abstract-Group-Action-Precategory l2)) = hom-Abstract-Group-Action G + pr1 (pr2 (Abstract-Group-Action-Precategory l2)) = + hom-set-Abstract-Group-Action G pr1 (pr1 (pr2 (pr2 (Abstract-Group-Action-Precategory l2)))) {X} {Y} {Z} = comp-hom-Abstract-Group-Action G X Y Z pr2 (pr1 (pr2 (pr2 (Abstract-Group-Action-Precategory l2)))) {X} {Y} {Z} {W} = diff --git a/src/group-theory/precategory-of-groups.lagda.md b/src/group-theory/precategory-of-groups.lagda.md index 6a4d7a92d1..ac6f4e4038 100644 --- a/src/group-theory/precategory-of-groups.lagda.md +++ b/src/group-theory/precategory-of-groups.lagda.md @@ -23,7 +23,7 @@ open import group-theory.homomorphisms-groups instance Group-Large-Precategory : Large-Precategory lsuc (_⊔_) obj-Large-Precategory Group-Large-Precategory = Group - hom-Large-Precategory Group-Large-Precategory = hom-Group + hom-set-Large-Precategory Group-Large-Precategory = hom-set-Group comp-hom-Large-Precategory Group-Large-Precategory {X = G} {H} {K} = comp-hom-Group G H K id-hom-Large-Precategory Group-Large-Precategory {X = G} = diff --git a/src/group-theory/precategory-of-monoids.lagda.md b/src/group-theory/precategory-of-monoids.lagda.md index 4b3016b332..dda1c7f0cd 100644 --- a/src/group-theory/precategory-of-monoids.lagda.md +++ b/src/group-theory/precategory-of-monoids.lagda.md @@ -31,9 +31,9 @@ Monoid-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Monoid-Large-Precategory = Monoid -hom-Large-Precategory +hom-set-Large-Precategory Monoid-Large-Precategory = - hom-Monoid + hom-set-Monoid comp-hom-Large-Precategory Monoid-Large-Precategory {X = K} {L} {M} = comp-hom-Monoid K L M diff --git a/src/group-theory/precategory-of-semigroups.lagda.md b/src/group-theory/precategory-of-semigroups.lagda.md index 238f124e23..6b1a380ec3 100644 --- a/src/group-theory/precategory-of-semigroups.lagda.md +++ b/src/group-theory/precategory-of-semigroups.lagda.md @@ -29,7 +29,7 @@ Semigroups and semigroup homomorphisms form a precategory. instance Semigroup-Large-Precategory : Large-Precategory lsuc (_⊔_) obj-Large-Precategory Semigroup-Large-Precategory = Semigroup - hom-Large-Precategory Semigroup-Large-Precategory = hom-Semigroup + hom-set-Large-Precategory Semigroup-Large-Precategory = hom-set-Semigroup comp-hom-Large-Precategory Semigroup-Large-Precategory {X = G} {H} {K} = comp-hom-Semigroup G H K diff --git a/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md b/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md index e4e2af66bd..5ed417a8d1 100644 --- a/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md +++ b/src/group-theory/subgroups-generated-by-subsets-groups.lagda.md @@ -343,7 +343,7 @@ module _ ( H)) subgroup-subset-hom-large-poset-Group : - hom-Large-Poset + hom-set-Large-Poset ( λ l2 → l1 ⊔ l2) ( powerset-Large-Poset (type-Group G)) ( Subgroup-Large-Poset G) diff --git a/src/group-theory/subgroups.lagda.md b/src/group-theory/subgroups.lagda.md index 927b97ad06..f3a59b454f 100644 --- a/src/group-theory/subgroups.lagda.md +++ b/src/group-theory/subgroups.lagda.md @@ -480,7 +480,7 @@ preserves-order-subset-Subgroup G H K = id subset-subgroup-hom-large-poset-Group : {l1 : Level} (G : Group l1) → - hom-Large-Poset + hom-set-Large-Poset ( id) ( Subgroup-Large-Poset G) ( powerset-Large-Poset (type-Group G)) diff --git a/src/order-theory/closure-operators-large-locales.lagda.md b/src/order-theory/closure-operators-large-locales.lagda.md index b3d37d8358..7c20d16e68 100644 --- a/src/order-theory/closure-operators-large-locales.lagda.md +++ b/src/order-theory/closure-operators-large-locales.lagda.md @@ -63,7 +63,7 @@ module _ where hom-large-poset-closure-operator-Large-Locale : - hom-Large-Poset id + hom-set-Large-Poset id ( large-poset-Large-Locale L) ( large-poset-Large-Locale L) hom-large-poset-closure-operator-Large-Locale = diff --git a/src/order-theory/closure-operators-large-posets.lagda.md b/src/order-theory/closure-operators-large-posets.lagda.md index 9badfeef35..2754468f56 100644 --- a/src/order-theory/closure-operators-large-posets.lagda.md +++ b/src/order-theory/closure-operators-large-posets.lagda.md @@ -47,7 +47,7 @@ module _ where field hom-closure-operator-Large-Poset : - hom-Large-Poset id P P + hom-set-Large-Poset id P P is-inflationary-closure-operator-Large-Poset : {l1 : Level} (x : type-Large-Poset P l1) → leq-Large-Poset P x diff --git a/src/order-theory/galois-connections-large-posets.lagda.md b/src/order-theory/galois-connections-large-posets.lagda.md index 0a2157a3d8..6778055437 100644 --- a/src/order-theory/galois-connections-large-posets.lagda.md +++ b/src/order-theory/galois-connections-large-posets.lagda.md @@ -22,8 +22,8 @@ open import order-theory.order-preserving-maps-large-posets A **galois connection** between [large posets](order-theory.large-posets.md) `P` and `Q` consists of [order preserving maps](order-theory.order-preserving-maps-large-posets.md) -`f : hom-Large-Poset id P Q` and `hom-Large-Poset id Q P` such that the adjoint -relation +`f : hom-set-Large-Poset id P Q` and `hom-set-Large-Poset id Q P` such that the +adjoint relation ```text (f x ≤ y) ↔ (x ≤ g y) @@ -60,9 +60,9 @@ module _ make-galois-connection-Large-Poset field lower-adjoint-galois-connection-Large-Poset : - hom-Large-Poset γ P Q + hom-set-Large-Poset γ P Q upper-adjoint-galois-connection-Large-Poset : - hom-Large-Poset δ Q P + hom-set-Large-Poset δ Q P adjoint-relation-galois-connection-Large-Poset : {l1 l2 : Level} (x : type-Large-Poset P l1) (y : type-Large-Poset Q l2) → @@ -139,13 +139,13 @@ module _ UU (βQ l1 l2) _≤-Q_ = leq-Large-Poset Q - hom-f : hom-Large-Poset _ P Q + hom-f : hom-set-Large-Poset _ P Q hom-f = lower-adjoint-galois-connection-Large-Poset G f : {l : Level} → type-Large-Poset P l → type-Large-Poset Q (γ l) f = map-hom-Large-Poset P Q hom-f - hom-g : hom-Large-Poset _ Q P + hom-g : hom-set-Large-Poset _ Q P hom-g = upper-adjoint-galois-connection-Large-Poset G g : {l : Level} → type-Large-Poset Q l → type-Large-Poset P (δ l) diff --git a/src/order-theory/homomorphisms-large-frames.lagda.md b/src/order-theory/homomorphisms-large-frames.lagda.md index 80de9de25d..441c3fb91d 100644 --- a/src/order-theory/homomorphisms-large-frames.lagda.md +++ b/src/order-theory/homomorphisms-large-frames.lagda.md @@ -33,11 +33,11 @@ module _ where record - hom-Large-Frame : UUω + hom-set-Large-Frame : UUω where field hom-large-meet-semilattice-hom-Large-Frame : - hom-Large-Meet-Semilattice + hom-set-Large-Meet-Semilattice ( large-meet-semilattice-Large-Frame K) ( large-meet-semilattice-Large-Frame L) preserves-sup-hom-Large-Frame : @@ -47,10 +47,10 @@ module _ ( hom-large-poset-hom-Large-Meet-Semilattice ( hom-large-meet-semilattice-hom-Large-Frame)) - open hom-Large-Frame public + open hom-set-Large-Frame public module _ - (f : hom-Large-Frame) + (f : hom-set-Large-Frame) where map-hom-Large-Frame : diff --git a/src/order-theory/homomorphisms-large-locales.lagda.md b/src/order-theory/homomorphisms-large-locales.lagda.md index ae621fd45d..eb64ab8e8f 100644 --- a/src/order-theory/homomorphisms-large-locales.lagda.md +++ b/src/order-theory/homomorphisms-large-locales.lagda.md @@ -30,11 +30,11 @@ module _ (K : Large-Locale αK βK γ) (L : Large-Locale αL βL γ) where - hom-Large-Locale : UUω - hom-Large-Locale = hom-Large-Frame L K + hom-set-Large-Locale : UUω + hom-set-Large-Locale = hom-set-Large-Frame L K module _ - (f : hom-Large-Locale) + (f : hom-set-Large-Locale) where map-hom-Large-Locale : diff --git a/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md b/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md index dc3ab7fdc7..58ba75386a 100644 --- a/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md +++ b/src/order-theory/homomorphisms-large-meet-semilattices.lagda.md @@ -35,11 +35,11 @@ module _ where record - hom-Large-Meet-Semilattice : UUω + hom-set-Large-Meet-Semilattice : UUω where field hom-large-poset-hom-Large-Meet-Semilattice : - hom-Large-Poset id + hom-set-Large-Poset id ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) preserves-meets-hom-Large-Meet-Semilattice : @@ -70,10 +70,10 @@ module _ ( top-Large-Meet-Semilattice K) = top-Large-Meet-Semilattice L - open hom-Large-Meet-Semilattice public + open hom-set-Large-Meet-Semilattice public module _ - (f : hom-Large-Meet-Semilattice) + (f : hom-set-Large-Meet-Semilattice) where map-hom-Large-Meet-Semilattice : diff --git a/src/order-theory/homomorphisms-large-suplattices.lagda.md b/src/order-theory/homomorphisms-large-suplattices.lagda.md index e0bdab126f..d13f3b7102 100644 --- a/src/order-theory/homomorphisms-large-suplattices.lagda.md +++ b/src/order-theory/homomorphisms-large-suplattices.lagda.md @@ -35,7 +35,7 @@ module _ where preserves-sup-hom-Large-Poset : - hom-Large-Poset id + hom-set-Large-Poset id ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) → UUω @@ -55,20 +55,20 @@ module _ ( x i)) record - hom-Large-Suplattice : UUω + hom-set-Large-Suplattice : UUω where field hom-large-poset-hom-Large-Suplattice : - hom-Large-Poset id + hom-set-Large-Poset id ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) preserves-sup-hom-Large-Suplattice : preserves-sup-hom-Large-Poset hom-large-poset-hom-Large-Suplattice - open hom-Large-Suplattice public + open hom-set-Large-Suplattice public module _ - (f : hom-Large-Suplattice) + (f : hom-set-Large-Suplattice) where map-hom-Large-Suplattice : diff --git a/src/order-theory/homomorphisms-meet-semilattices.lagda.md b/src/order-theory/homomorphisms-meet-semilattices.lagda.md index b65d7cfb7a..e0abeac2dc 100644 --- a/src/order-theory/homomorphisms-meet-semilattices.lagda.md +++ b/src/order-theory/homomorphisms-meet-semilattices.lagda.md @@ -61,15 +61,15 @@ module _ ( semigroup-Meet-Semilattice A) ( semigroup-Meet-Semilattice B) - hom-Meet-Semilattice : Set (l1 ⊔ l2) - hom-Meet-Semilattice = - hom-Semigroup (semigroup-Meet-Semilattice A) (semigroup-Meet-Semilattice B) + hom-set-Meet-Semilattice : Set (l1 ⊔ l2) + hom-set-Meet-Semilattice = + hom-set-Semigroup (semigroup-Meet-Semilattice A) (semigroup-Meet-Semilattice B) type-hom-Meet-Semilattice : UU (l1 ⊔ l2) - type-hom-Meet-Semilattice = type-Set hom-Meet-Semilattice + type-hom-Meet-Semilattice = type-Set hom-set-Meet-Semilattice is-set-type-hom-Meet-Semilattice : is-set type-hom-Meet-Semilattice - is-set-type-hom-Meet-Semilattice = is-set-type-Set hom-Meet-Semilattice + is-set-type-hom-Meet-Semilattice = is-set-type-Set hom-set-Meet-Semilattice module _ (f : type-hom-Meet-Semilattice) @@ -140,8 +140,8 @@ module _ is-prop-preserves-meet-hom-Prop f = is-prop-type-Prop (preserves-meet-hom-Poset-Prop f) - hom-Order-Theoretic-Meet-Semilattice : Set (l1 ⊔ l2 ⊔ l3 ⊔ l4) - hom-Order-Theoretic-Meet-Semilattice = + hom-set-Order-Theoretic-Meet-Semilattice : Set (l1 ⊔ l2 ⊔ l3 ⊔ l4) + hom-set-Order-Theoretic-Meet-Semilattice = set-subset ( hom-set-Poset ( poset-Order-Theoretic-Meet-Semilattice A) diff --git a/src/order-theory/large-posets.lagda.md b/src/order-theory/large-posets.lagda.md index 03b60c2766..32715957a5 100644 --- a/src/order-theory/large-posets.lagda.md +++ b/src/order-theory/large-posets.lagda.md @@ -118,7 +118,7 @@ module _ is-large-poset-Large-Category → is-antisymmetric-Large-Relation ( obj-Large-Category C) - ( type-hom-Large-Category C) + ( hom-Large-Category C) is-antisymmetric-is-large-poset-Large-Category H X Y f g = eq-iso-Large-Category C X Y ( f , g , eq-is-prop (H Y Y) , eq-is-prop (H X X)) diff --git a/src/order-theory/large-preorders.lagda.md b/src/order-theory/large-preorders.lagda.md index ba9c1b5721..cb7beffe4d 100644 --- a/src/order-theory/large-preorders.lagda.md +++ b/src/order-theory/large-preorders.lagda.md @@ -88,7 +88,7 @@ module _ is-large-preorder-Large-Precategory = {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) → - is-prop (type-hom-Large-Precategory C X Y) + is-prop (hom-Large-Precategory C X Y) large-preorder-Large-Precategory : is-large-preorder-Large-Precategory → Large-Preorder α β @@ -96,7 +96,7 @@ module _ ( large-preorder-Large-Precategory H) = obj-Large-Precategory C pr1 (leq-prop-Large-Preorder (large-preorder-Large-Precategory H) X Y) = - type-hom-Large-Precategory C X Y + hom-Large-Precategory C X Y pr2 (leq-prop-Large-Preorder (large-preorder-Large-Precategory H) X Y) = H X Y refl-leq-Large-Preorder @@ -136,7 +136,7 @@ module _ large-precategory-Large-Preorder : Large-Precategory α β obj-Large-Precategory large-precategory-Large-Preorder = type-Large-Preorder P - hom-Large-Precategory large-precategory-Large-Preorder x y = + hom-set-Large-Precategory large-precategory-Large-Preorder x y = set-Prop (leq-prop-Large-Preorder P x y) comp-hom-Large-Precategory large-precategory-Large-Preorder {X = x} {y} {z} = transitive-leq-Large-Preorder P x y z diff --git a/src/order-theory/nuclei-large-locales.lagda.md b/src/order-theory/nuclei-large-locales.lagda.md index 3c68074c01..f4e94f161b 100644 --- a/src/order-theory/nuclei-large-locales.lagda.md +++ b/src/order-theory/nuclei-large-locales.lagda.md @@ -35,8 +35,8 @@ open import order-theory.least-upper-bounds-large-posets ## Idea A **nucleus** on a [large locale](order-theory.large-locales.md) `L` is an order -preserving map `j : hom-Large-Poset id L L` such that `j` preserves meets and is -inflationary and idempotent. +preserving map `j : hom-set-Large-Poset id L L` such that `j` preserves meets +and is inflationary and idempotent. ## Definitions @@ -53,7 +53,7 @@ module _ where field hom-large-meet-semilattice-nucleus-Large-Locale : - hom-Large-Meet-Semilattice + hom-set-Large-Meet-Semilattice ( large-meet-semilattice-Large-Locale L) ( large-meet-semilattice-Large-Locale L) is-inflationary-nucleus-Large-Locale : diff --git a/src/order-theory/order-preserving-maps-large-posets.lagda.md b/src/order-theory/order-preserving-maps-large-posets.lagda.md index 77a3f65076..e1e1280218 100644 --- a/src/order-theory/order-preserving-maps-large-posets.lagda.md +++ b/src/order-theory/order-preserving-maps-large-posets.lagda.md @@ -35,16 +35,16 @@ module _ (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) where - hom-Large-Poset : UUω - hom-Large-Poset = - hom-Large-Preorder γ + hom-set-Large-Poset : UUω + hom-set-Large-Poset = + hom-set-Large-Preorder γ ( large-preorder-Large-Poset P) ( large-preorder-Large-Poset Q) module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) - (f : hom-Large-Poset γ P Q) + (f : hom-set-Large-Poset γ P Q) where map-hom-Large-Poset : diff --git a/src/order-theory/order-preserving-maps-large-preorders.lagda.md b/src/order-theory/order-preserving-maps-large-preorders.lagda.md index 2f27a3f10d..825ab09970 100644 --- a/src/order-theory/order-preserving-maps-large-preorders.lagda.md +++ b/src/order-theory/order-preserving-maps-large-preorders.lagda.md @@ -35,7 +35,7 @@ module _ (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) where - record hom-Large-Preorder : UUω + record hom-set-Large-Preorder : UUω where constructor make-hom-Large-Preorder @@ -51,5 +51,5 @@ module _ ( map-hom-Large-Preorder x) ( map-hom-Large-Preorder y) - open hom-Large-Preorder public + open hom-set-Large-Preorder public ``` diff --git a/src/order-theory/posets.lagda.md b/src/order-theory/posets.lagda.md index e4e97f6597..2123e07862 100644 --- a/src/order-theory/posets.lagda.md +++ b/src/order-theory/posets.lagda.md @@ -168,7 +168,7 @@ module _ module _ {l1 l2 : Level} (C : Category l1 l2) ( is-prop-hom-C : - (x y : obj-Category C) → is-prop (type-hom-Category C x y)) + (x y : obj-Category C) → is-prop (hom-Category C x y)) where preorder-is-prop-hom-Category : Preorder l1 l2 diff --git a/src/order-theory/preorders.lagda.md b/src/order-theory/preorders.lagda.md index 971bbf4ea6..ea639bd1bd 100644 --- a/src/order-theory/preorders.lagda.md +++ b/src/order-theory/preorders.lagda.md @@ -151,14 +151,14 @@ module _ module _ {l1 l2 : Level} (C : Precategory l1 l2) ( is-prop-hom-C : - (x y : obj-Precategory C) → is-prop (type-hom-Precategory C x y)) + (x y : obj-Precategory C) → is-prop (hom-Precategory C x y)) where preorder-is-prop-hom-Precategory : Preorder l1 l2 pr1 preorder-is-prop-hom-Precategory = obj-Precategory C pr1 (pr1 (pr2 preorder-is-prop-hom-Precategory) x y) = - type-hom-Precategory C x y + hom-Precategory C x y pr2 (pr1 (pr2 preorder-is-prop-hom-Precategory) x y) = is-prop-hom-C x y pr1 (pr2 (pr2 preorder-is-prop-hom-Precategory)) x = diff --git a/src/order-theory/reflective-galois-connections-large-posets.lagda.md b/src/order-theory/reflective-galois-connections-large-posets.lagda.md index bd27be52af..a55d6c14fc 100644 --- a/src/order-theory/reflective-galois-connections-large-posets.lagda.md +++ b/src/order-theory/reflective-galois-connections-large-posets.lagda.md @@ -71,7 +71,7 @@ module _ where lower-adjoint-reflective-galois-connection-Large-Poset : - hom-Large-Poset γ P Q + hom-set-Large-Poset γ P Q lower-adjoint-reflective-galois-connection-Large-Poset = lower-adjoint-galois-connection-Large-Poset ( galois-connection-reflective-galois-connection-Large-Poset G) diff --git a/src/reflection/precategory-solver.lagda.md b/src/reflection/precategory-solver.lagda.md index b45e0a41d7..95f866533d 100644 --- a/src/reflection/precategory-solver.lagda.md +++ b/src/reflection/precategory-solver.lagda.md @@ -61,9 +61,9 @@ module _ where id-hom-Precategory-Expr : {x : obj-Precategory C} → Precategory-Expr x x - type-hom-Precategory-Expr : + hom-Precategory-Expr : {x y : obj-Precategory C} → - type-hom-Precategory C x y → Precategory-Expr x y + hom-Precategory C x y → Precategory-Expr x y comp-hom-Precategory-Expr : {x y z : obj-Precategory C} → Precategory-Expr y z → Precategory-Expr x y → Precategory-Expr x z @@ -75,9 +75,9 @@ module _ in-Precategory-Expr : {x y : obj-Precategory C} → Precategory-Expr x y → - type-hom-Precategory C x y + hom-Precategory C x y in-Precategory-Expr id-hom-Precategory-Expr = id-hom-Precategory C - in-Precategory-Expr (type-hom-Precategory-Expr f) = f + in-Precategory-Expr (hom-Precategory-Expr f) = f in-Precategory-Expr (comp-hom-Precategory-Expr f g) = comp-hom-Precategory C (in-Precategory-Expr f) (in-Precategory-Expr g) ``` @@ -88,10 +88,10 @@ module _ eval-Precategory-Expr : {x y z : obj-Precategory C} → Precategory-Expr y z → - type-hom-Precategory C x y → - type-hom-Precategory C x z + hom-Precategory C x y → + hom-Precategory C x z eval-Precategory-Expr id-hom-Precategory-Expr f = f - eval-Precategory-Expr (type-hom-Precategory-Expr f) g = + eval-Precategory-Expr (hom-Precategory-Expr f) g = comp-hom-Precategory C f g eval-Precategory-Expr (comp-hom-Precategory-Expr f g) h = eval-Precategory-Expr f (eval-Precategory-Expr g h) @@ -99,12 +99,12 @@ module _ is-sound-eval-Precategory-Expr : {x y z : obj-Precategory C} (e : Precategory-Expr y z) - (f : type-hom-Precategory C x y) → + (f : hom-Precategory C x y) → ( eval-Precategory-Expr e f) = ( comp-hom-Precategory C (in-Precategory-Expr e) f) is-sound-eval-Precategory-Expr id-hom-Precategory-Expr f = inv (left-unit-law-comp-hom-Precategory C f) - is-sound-eval-Precategory-Expr (type-hom-Precategory-Expr f) g = refl + is-sound-eval-Precategory-Expr (hom-Precategory-Expr f) g = refl is-sound-eval-Precategory-Expr (comp-hom-Precategory-Expr f g) h = equational-reasoning eval-Precategory-Expr f (eval-Precategory-Expr g h) @@ -131,7 +131,7 @@ module _ normalize-Precategory-Expr : {x y : obj-Precategory C} → Precategory-Expr x y → - type-hom-Precategory C x y + hom-Precategory C x y normalize-Precategory-Expr e = eval-Precategory-Expr e (id-hom-Precategory C) is-sound-normalize-Precategory-Expr : @@ -190,7 +190,7 @@ private xs) ``` -### Building a term of `Precategory-Expr C x y` from a term of type `type-hom-Precategory C x y` +### Building a term of `Precategory-Expr C x y` from a term of type `hom-Precategory C x y` ```agda build-Precategory-Expr : Term → Term @@ -225,7 +225,7 @@ build-Precategory-Expr visible-Arg (build-Precategory-Expr f) ∷ nil) build-Precategory-Expr f = - con (quote type-hom-Precategory-Expr) (visible-Arg f ∷ nil) + con (quote hom-Precategory-Expr) (visible-Arg f ∷ nil) ``` ### The application of the `solve-Precategory-Expr` lemma @@ -268,7 +268,7 @@ module _ private _ : {x y : obj-Precategory C} - {f : type-hom-Precategory C x y} → + {f : hom-Precategory C x y} → f = f _ = solve-Precategory! C @@ -279,26 +279,26 @@ module _ _ : {a b c : obj-Precategory C} - {f : type-hom-Precategory C a b} - {g : type-hom-Precategory C b c} → + {f : hom-Precategory C a b} + {g : hom-Precategory C b c} → (comp-hom-Precategory C g f) = comp-hom-Precategory C g f _ = solve-Precategory! C _ : {a b c d : obj-Precategory C} - {f : type-hom-Precategory C a b} - {g : type-hom-Precategory C b c} → - {h : type-hom-Precategory C c d} → + {f : hom-Precategory C a b} + {g : hom-Precategory C b c} → + {h : hom-Precategory C c d} → comp-hom-Precategory C h (comp-hom-Precategory C g f) = comp-hom-Precategory C (comp-hom-Precategory C h g) f _ = solve-Precategory! C _ : {a b c d : obj-Precategory C} - {f : type-hom-Precategory C a b} - {g : type-hom-Precategory C b c} → - {h : type-hom-Precategory C c d} → + {f : hom-Precategory C a b} + {g : hom-Precategory C b c} → + {h : hom-Precategory C c d} → comp-hom-Precategory C ( comp-hom-Precategory C h (id-hom-Precategory C)) ( comp-hom-Precategory C g f) = diff --git a/src/ring-theory/category-of-cyclic-rings.lagda.md b/src/ring-theory/category-of-cyclic-rings.lagda.md index 2ff55e4845..8f0f1a3155 100644 --- a/src/ring-theory/category-of-cyclic-rings.lagda.md +++ b/src/ring-theory/category-of-cyclic-rings.lagda.md @@ -47,9 +47,9 @@ Cyclic-Ring-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Cyclic-Ring-Large-Precategory = Cyclic-Ring -hom-Large-Precategory +hom-set-Large-Precategory Cyclic-Ring-Large-Precategory = - hom-Cyclic-Ring + hom-set-Cyclic-Ring comp-hom-Large-Precategory Cyclic-Ring-Large-Precategory {X = R} {Y = S} {Z = T} = comp-hom-Cyclic-Ring R S T diff --git a/src/ring-theory/free-rings-with-one-generator.lagda.md b/src/ring-theory/free-rings-with-one-generator.lagda.md index 7e7cb1ab55..4131005dfa 100644 --- a/src/ring-theory/free-rings-with-one-generator.lagda.md +++ b/src/ring-theory/free-rings-with-one-generator.lagda.md @@ -23,7 +23,7 @@ The **free ring with one generator** is specified as a every ring `S` the map ```text - hom-Ring R S → type-Ring S + hom-set-Ring R S → type-Ring S ``` given by evaluating at the element `g` is an equivalence. This property is also diff --git a/src/ring-theory/groups-of-units-rings.lagda.md b/src/ring-theory/groups-of-units-rings.lagda.md index b970a43946..030b58b89b 100644 --- a/src/ring-theory/groups-of-units-rings.lagda.md +++ b/src/ring-theory/groups-of-units-rings.lagda.md @@ -248,10 +248,10 @@ module _ ```agda group-of-units-ring-functor-Large-Precategory : functor-Large-Precategory Ring-Large-Precategory Group-Large-Precategory id -obj-functor-Large-Precategory +map-obj-functor-Large-Precategory group-of-units-ring-functor-Large-Precategory = group-of-units-Ring -hom-functor-Large-Precategory +map-hom-functor-Large-Precategory group-of-units-ring-functor-Large-Precategory {X = R} {Y = S} = hom-group-of-units-hom-Ring R S preserves-comp-functor-Large-Precategory diff --git a/src/ring-theory/homomorphisms-cyclic-rings.lagda.md b/src/ring-theory/homomorphisms-cyclic-rings.lagda.md index 3d16f34ec8..92248e5768 100644 --- a/src/ring-theory/homomorphisms-cyclic-rings.lagda.md +++ b/src/ring-theory/homomorphisms-cyclic-rings.lagda.md @@ -43,8 +43,8 @@ module _ {l1 l2 : Level} (R : Cyclic-Ring l1) (S : Cyclic-Ring l2) where - hom-Cyclic-Ring : Set (l1 ⊔ l2) - hom-Cyclic-Ring = hom-Ring (ring-Cyclic-Ring R) (ring-Cyclic-Ring S) + hom-set-Cyclic-Ring : Set (l1 ⊔ l2) + hom-set-Cyclic-Ring = hom-set-Ring (ring-Cyclic-Ring R) (ring-Cyclic-Ring S) type-hom-Cyclic-Ring : UU (l1 ⊔ l2) type-hom-Cyclic-Ring = type-hom-Ring (ring-Cyclic-Ring R) (ring-Cyclic-Ring S) diff --git a/src/ring-theory/homomorphisms-rings.lagda.md b/src/ring-theory/homomorphisms-rings.lagda.md index ae5f15cdfe..57ca9c69e5 100644 --- a/src/ring-theory/homomorphisms-rings.lagda.md +++ b/src/ring-theory/homomorphisms-rings.lagda.md @@ -119,17 +119,17 @@ module _ {l1 l2 : Level} (R : Ring l1) (S : Ring l2) where - hom-Ring : Set (l1 ⊔ l2) - hom-Ring = + hom-set-Ring : Set (l1 ⊔ l2) + hom-set-Ring = set-subset - ( hom-Ab (ab-Ring R) (ab-Ring S)) + ( hom-set-Ab (ab-Ring R) (ab-Ring S)) ( is-ring-homomorphism-hom-Ab-Prop R S) type-hom-Ring : UU (l1 ⊔ l2) - type-hom-Ring = type-Set hom-Ring + type-hom-Ring = type-Set hom-set-Ring is-set-type-hom-Ring : is-set type-hom-Ring - is-set-type-hom-Ring = is-set-type-Set hom-Ring + is-set-type-hom-Ring = is-set-type-Set hom-set-Ring module _ (f : type-hom-Ring) diff --git a/src/ring-theory/homomorphisms-semirings.lagda.md b/src/ring-theory/homomorphisms-semirings.lagda.md index 2a531cfb16..ed70af8a1f 100644 --- a/src/ring-theory/homomorphisms-semirings.lagda.md +++ b/src/ring-theory/homomorphisms-semirings.lagda.md @@ -79,19 +79,19 @@ module _ is-prop-is-homomorphism-semiring-hom-Commutative-Monoid f = is-prop-type-Prop (is-homomorphism-semiring-hom-Commutative-Monoid-Prop f) - hom-Semiring : Set (l1 ⊔ l2) - hom-Semiring = + hom-set-Semiring : Set (l1 ⊔ l2) + hom-set-Semiring = set-subset - ( hom-Commutative-Monoid + ( hom-set-Commutative-Monoid ( additive-commutative-monoid-Semiring R) ( additive-commutative-monoid-Semiring S)) ( is-homomorphism-semiring-hom-Commutative-Monoid-Prop) type-hom-Semiring : UU (l1 ⊔ l2) - type-hom-Semiring = type-Set hom-Semiring + type-hom-Semiring = type-Set hom-set-Semiring is-set-type-hom-Semiring : is-set type-hom-Semiring - is-set-type-hom-Semiring = is-set-type-Set hom-Semiring + is-set-type-hom-Semiring = is-set-type-Set hom-set-Semiring module _ (f : type-hom-Semiring) diff --git a/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md b/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md index 9350b7af52..ed5a44efae 100644 --- a/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md +++ b/src/ring-theory/ideals-generated-by-subsets-rings.lagda.md @@ -353,7 +353,7 @@ module _ ( H)) ideal-subset-hom-large-poset-Ring : - hom-Large-Poset + hom-set-Large-Poset ( λ l2 → l1 ⊔ l2) ( powerset-Large-Poset (type-Ring A)) ( ideal-Ring-Large-Poset A) diff --git a/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md b/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md index 2eebe34272..5a23030247 100644 --- a/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md +++ b/src/ring-theory/left-ideals-generated-by-subsets-rings.lagda.md @@ -309,7 +309,7 @@ module _ ( H)) left-ideal-subset-hom-large-poset-Ring : - hom-Large-Poset + hom-set-Large-Poset ( λ l2 → l1 ⊔ l2) ( powerset-Large-Poset (type-Ring A)) ( left-ideal-Ring-Large-Poset A) diff --git a/src/ring-theory/localizations-rings.lagda.md b/src/ring-theory/localizations-rings.lagda.md index 8264cb164a..66fdca8c56 100644 --- a/src/ring-theory/localizations-rings.lagda.md +++ b/src/ring-theory/localizations-rings.lagda.md @@ -192,9 +192,9 @@ htpy-universal-property-localization-Ring R S T x f H up-f h K = {- is-equiv-up-localization-up-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) - (f : hom-Ring R S) (inverts-f : inverts-element-hom-Ring R S x f) → - (g : hom-Ring R T) (inverts-g : inverts-element-hom-Ring R T x g) → - (h : hom-Ring S T) (H : htpy-hom-Ring R T (comp-hom-Ring R S T h f) g) → + (f : hom-set-Ring R S) (inverts-f : inverts-element-hom-Ring R S x f) → + (g : hom-set-Ring R T) (inverts-g : inverts-element-hom-Ring R T x g) → + (h : hom-set-Ring S T) (H : htpy-hom-Ring R T (comp-hom-Ring R S T h f) g) → ({l : Level} → universal-property-localization-Ring l R S x f inverts-f) → ({l : Level} → universal-property-localization-Ring l R T x g inverts-g) → is-iso-hom-Ring S T h diff --git a/src/ring-theory/poset-of-ideals-rings.lagda.md b/src/ring-theory/poset-of-ideals-rings.lagda.md index c75df9d982..8f29c36673 100644 --- a/src/ring-theory/poset-of-ideals-rings.lagda.md +++ b/src/ring-theory/poset-of-ideals-rings.lagda.md @@ -151,7 +151,7 @@ module _ preserves-order-subset-ideal-Ring I J H = H subset-ideal-hom-large-poset-Ring : - hom-Large-Poset + hom-set-Large-Poset ( id) ( ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) diff --git a/src/ring-theory/poset-of-left-ideals-rings.lagda.md b/src/ring-theory/poset-of-left-ideals-rings.lagda.md index 360e5dd3b2..87fda7dfea 100644 --- a/src/ring-theory/poset-of-left-ideals-rings.lagda.md +++ b/src/ring-theory/poset-of-left-ideals-rings.lagda.md @@ -161,7 +161,7 @@ module _ preserves-order-subset-left-ideal-Ring I J H = H subset-left-ideal-hom-large-poset-Ring : - hom-Large-Poset + hom-set-Large-Poset ( id) ( left-ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) diff --git a/src/ring-theory/poset-of-right-ideals-rings.lagda.md b/src/ring-theory/poset-of-right-ideals-rings.lagda.md index c7d7e3ca0d..7911bdafab 100644 --- a/src/ring-theory/poset-of-right-ideals-rings.lagda.md +++ b/src/ring-theory/poset-of-right-ideals-rings.lagda.md @@ -162,7 +162,7 @@ module _ preserves-order-subset-right-ideal-Ring I J H = H subset-right-ideal-hom-large-poset-Ring : - hom-Large-Poset + hom-set-Large-Poset ( id) ( right-ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) diff --git a/src/ring-theory/precategory-of-rings.lagda.md b/src/ring-theory/precategory-of-rings.lagda.md index d95f46a310..4be0085e01 100644 --- a/src/ring-theory/precategory-of-rings.lagda.md +++ b/src/ring-theory/precategory-of-rings.lagda.md @@ -32,9 +32,9 @@ Ring-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Ring-Large-Precategory = Ring -hom-Large-Precategory +hom-set-Large-Precategory Ring-Large-Precategory = - hom-Ring + hom-set-Ring comp-hom-Large-Precategory Ring-Large-Precategory {X = R} {S} {T} = comp-hom-Ring R S T diff --git a/src/ring-theory/precategory-of-semirings.lagda.md b/src/ring-theory/precategory-of-semirings.lagda.md index 44c8d9152c..e0ef395d6b 100644 --- a/src/ring-theory/precategory-of-semirings.lagda.md +++ b/src/ring-theory/precategory-of-semirings.lagda.md @@ -32,9 +32,9 @@ Semiring-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Semiring-Large-Precategory = Semiring -hom-Large-Precategory +hom-set-Large-Precategory Semiring-Large-Precategory = - hom-Semiring + hom-set-Semiring comp-hom-Large-Precategory Semiring-Large-Precategory {X = R} {S} {T} = comp-hom-Semiring R S T diff --git a/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md b/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md index 38d5ceeffb..1bd74b6b2b 100644 --- a/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md +++ b/src/ring-theory/right-ideals-generated-by-subsets-rings.lagda.md @@ -307,7 +307,7 @@ module _ ( H)) right-ideal-subset-hom-large-poset-Ring : - hom-Large-Poset + hom-set-Large-Poset ( λ l2 → l1 ⊔ l2) ( powerset-Large-Poset (type-Ring A)) ( right-ideal-Ring-Large-Poset A) diff --git a/src/species/precategory-of-finite-species.lagda.md b/src/species/precategory-of-finite-species.lagda.md index 8593d18d98..1144d9a662 100644 --- a/src/species/precategory-of-finite-species.lagda.md +++ b/src/species/precategory-of-finite-species.lagda.md @@ -29,7 +29,7 @@ species-𝔽-Large-Precategory : (l1 : Level) → Large-Precategory (λ l → lsuc l1 ⊔ lsuc l) (λ l2 l3 → lsuc l1 ⊔ l2 ⊔ l3) obj-Large-Precategory (species-𝔽-Large-Precategory l1) = species-𝔽 l1 -hom-Large-Precategory (species-𝔽-Large-Precategory l1) = hom-species-𝔽 +hom-set-Large-Precategory (species-𝔽-Large-Precategory l1) = hom-species-𝔽 comp-hom-Large-Precategory (species-𝔽-Large-Precategory l1) {X = F} {G} {H} = comp-hom-species-𝔽 F G H id-hom-Large-Precategory (species-𝔽-Large-Precategory l1) {X = F} =