forked from microsoft/DNS-Challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
noisyspeech_synthesizer_multiprocessing.py
342 lines (271 loc) · 13.5 KB
/
noisyspeech_synthesizer_multiprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
@author: chkarada
"""
# Note that this file picks the clean speech files randomly, so it does not guarantee that all
# source files will be used
import os
import glob
import argparse
import ast
import configparser as CP
from itertools import repeat
import multiprocessing
from multiprocessing import Pool
import random
from random import shuffle
import librosa
import numpy as np
from audiolib import is_clipped, audioread, audiowrite, snr_mixer, activitydetector
import utils
PROCESSES = multiprocessing.cpu_count()
MAXTRIES = 50
MAXFILELEN = 100
np.random.seed(2)
random.seed(3)
clean_counter = None
noise_counter = None
def init(args1, args2):
''' store the counter for later use '''
global clean_counter, noise_counter
clean_counter = args1
noise_counter = args2
def build_audio(is_clean, params, filenum, audio_samples_length=-1):
'''Construct an audio signal from source files'''
fs_output = params['fs']
silence_length = params['silence_length']
if audio_samples_length == -1:
audio_samples_length = int(params['audio_length']*params['fs'])
output_audio = np.zeros(0)
remaining_length = audio_samples_length
files_used = []
clipped_files = []
global clean_counter, noise_counter
if is_clean:
source_files = params['cleanfilenames']
idx_counter = clean_counter
else:
source_files = params['noisefilenames']
idx_counter = noise_counter
# initialize silence
silence = np.zeros(int(fs_output*silence_length))
# iterate through multiple clips until we have a long enough signal
tries_left = MAXTRIES
while remaining_length > 0 and tries_left > 0:
# read next audio file and resample if necessary
with idx_counter.get_lock():
idx_counter.value += 1
idx = idx_counter.value % np.size(source_files)
input_audio, fs_input = audioread(source_files[idx])
if fs_input != fs_output:
input_audio = librosa.resample(input_audio, fs_input, fs_output)
# if current file is longer than remaining desired length, and this is
# noise generation or this is training set, subsample it randomly
if len(input_audio) > remaining_length and (not is_clean or not params['is_test_set']):
idx_seg = np.random.randint(0, len(input_audio)-remaining_length)
input_audio = input_audio[idx_seg:idx_seg+remaining_length]
# check for clipping, and if found move onto next file
if is_clipped(input_audio):
clipped_files.append(source_files[idx])
tries_left -= 1
continue
# concatenate current input audio to output audio stream
files_used.append(source_files[idx])
output_audio = np.append(output_audio, input_audio)
remaining_length -= len(input_audio)
# add some silence if we have not reached desired audio length
if remaining_length > 0:
silence_len = min(remaining_length, len(silence))
output_audio = np.append(output_audio, silence[:silence_len])
remaining_length -= silence_len
if tries_left == 0:
print("Audio generation failed for filenum " + str(filenum))
return [], [], clipped_files
return output_audio, files_used, clipped_files
def gen_audio(is_clean, params, filenum, audio_samples_length=-1):
'''Calls build_audio() to get an audio signal, and verify that it meets the
activity threshold'''
clipped_files = []
low_activity_files = []
if audio_samples_length == -1:
audio_samples_length = int(params['audio_length']*params['fs'])
if is_clean:
activity_threshold = params['clean_activity_threshold']
else:
activity_threshold = params['noise_activity_threshold']
while True:
audio, source_files, new_clipped_files = \
build_audio(is_clean, params, filenum, audio_samples_length)
clipped_files += new_clipped_files
if len(audio) < audio_samples_length:
continue
if activity_threshold == 0.0:
break
percactive = activitydetector(audio=audio)
if percactive > activity_threshold:
break
else:
low_activity_files += source_files
return audio, source_files, clipped_files, low_activity_files
def main_gen(params, filenum):
'''Calls gen_audio() to generate the audio signals, verifies that they meet
the requirements, and writes the files to storage'''
print("Generating file #" + str(filenum))
clean_clipped_files = []
clean_low_activity_files = []
noise_clipped_files = []
noise_low_activity_files = []
while True:
# generate clean speech
clean, clean_source_files, clean_cf, clean_laf = \
gen_audio(True, params, filenum)
# generate noise
noise, noise_source_files, noise_cf, noise_laf = \
gen_audio(False, params, filenum, len(clean))
clean_clipped_files += clean_cf
clean_low_activity_files += clean_laf
noise_clipped_files += noise_cf
noise_low_activity_files += noise_laf
# mix clean speech and noise
# if specified, use specified SNR value
if not params['randomize_snr']:
snr = params['snr']
# use a randomly sampled SNR value between the specified bounds
else:
snr = np.random.randint(params['snr_lower'], params['snr_upper'])
clean_snr, noise_snr, noisy_snr, target_level = snr_mixer(params=params,
clean=clean,
noise=noise,
snr=snr)
# Uncomment the below lines if you need segmental SNR and comment the above lines using snr_mixer
#clean_snr, noise_snr, noisy_snr, target_level = segmental_snr_mixer(params=params,
# clean=clean,
# noise=noise,
# snr=snr)
# unexpected clipping
if is_clipped(clean_snr) or is_clipped(noise_snr) or is_clipped(noisy_snr):
continue
else:
break
# write resultant audio streams to files
hyphen = '-'
clean_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in clean_source_files]
clean_files_joined = hyphen.join(clean_source_filenamesonly)[:MAXFILELEN]
noise_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in noise_source_files]
noise_files_joined = hyphen.join(noise_source_filenamesonly)[:MAXFILELEN]
noisyfilename = clean_files_joined + '_' + noise_files_joined + '_snr' + \
str(snr) + '_fileid_' + str(filenum) + '.wav'
cleanfilename = 'clean_fileid_'+str(filenum)+'.wav'
noisefilename = 'noise_fileid_'+str(filenum)+'.wav'
noisypath = os.path.join(params['noisyspeech_dir'], noisyfilename)
cleanpath = os.path.join(params['clean_proc_dir'], cleanfilename)
noisepath = os.path.join(params['noise_proc_dir'], noisefilename)
audio_signals = [noisy_snr, clean_snr, noise_snr]
file_paths = [noisypath, cleanpath, noisepath]
for i in range(len(audio_signals)):
try:
audiowrite(file_paths[i], audio_signals[i], params['fs'])
except Exception as e:
print(str(e))
pass
return clean_source_files, clean_clipped_files, clean_low_activity_files, \
noise_source_files, noise_clipped_files, noise_low_activity_files
def extract_list(input_list, index):
output_list = [i[index] for i in input_list]
flat_output_list = [item for sublist in output_list for item in sublist]
flat_output_list = sorted(set(flat_output_list))
return flat_output_list
def main_body():
'''Main body of this file'''
parser = argparse.ArgumentParser()
# Configurations: read noisyspeech_synthesizer.cfg and gather inputs
parser.add_argument('--cfg', default='noisyspeech_synthesizer.cfg',
help='Read noisyspeech_synthesizer.cfg for all the details')
parser.add_argument('--cfg_str', type=str, default='noisy_speech')
args = parser.parse_args()
params = dict()
params['args'] = args
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
assert os.path.exists(cfgpath), f'No configuration file as [{cfgpath}]'
cfg = CP.ConfigParser()
cfg._interpolation = CP.ExtendedInterpolation()
cfg.read(cfgpath)
params['cfg'] = cfg._sections[args.cfg_str]
cfg = params['cfg']
clean_dir = os.path.join(os.path.dirname(__file__), 'CleanSpeech')
if cfg['speech_dir'] != 'None':
clean_dir = cfg['speech_dir']
if not os.path.exists(clean_dir):
assert False, ('Clean speech data is required')
noise_dir = os.path.join(os.path.dirname(__file__), 'Noise')
if cfg['noise_dir'] != 'None':
noise_dir = cfg['noise_dir']
if not os.path.exists(noise_dir):
assert False, ('Noise data is required')
params['fs'] = int(cfg['sampling_rate'])
params['audioformat'] = cfg['audioformat']
params['audio_length'] = float(cfg['audio_length'])
params['silence_length'] = float(cfg['silence_length'])
params['total_hours'] = float(cfg['total_hours'])
if cfg['fileindex_start'] != 'None' and cfg['fileindex_start'] != 'None':
params['fileindex_start'] = int(cfg['fileindex_start'])
params['fileindex_end'] = int(cfg['fileindex_end'])
params['num_files'] = int(params['fileindex_end'])-int(params['fileindex_start'])
else:
params['num_files'] = int((params['total_hours']*60*60)/params['audio_length'])
print('Number of files to be synthesized:', params['num_files'])
params['is_test_set'] = utils.str2bool(cfg['is_test_set'])
params['clean_activity_threshold'] = float(cfg['clean_activity_threshold'])
params['noise_activity_threshold'] = float(cfg['noise_activity_threshold'])
params['snr_lower'] = int(cfg['snr_lower'])
params['snr_upper'] = int(cfg['snr_upper'])
params['randomize_snr'] = utils.str2bool(cfg['randomize_snr'])
params['target_level_lower'] = int(cfg['target_level_lower'])
params['target_level_upper'] = int(cfg['target_level_upper'])
if 'snr' in cfg.keys():
params['snr'] = int(cfg['snr'])
else:
params['snr'] = int((params['snr_lower'] + params['snr_upper'])/2)
params['noisyspeech_dir'] = utils.get_dir(cfg, 'noisy_destination', 'noisy')
params['clean_proc_dir'] = utils.get_dir(cfg, 'clean_destination', 'clean')
params['noise_proc_dir'] = utils.get_dir(cfg, 'noise_destination', 'noise')
if 'speech_csv' in cfg.keys() and cfg['speech_csv'] != 'None':
cleanfilenames = pd.read_csv(cfg['speech_csv'])
cleanfilenames = cleanfilenames['filename']
else:
cleanfilenames = glob.glob(os.path.join(clean_dir, params['audioformat']))
params['cleanfilenames'] = cleanfilenames
shuffle(params['cleanfilenames'])
params['num_cleanfiles'] = len(params['cleanfilenames'])
params['noisefilenames'] = glob.glob(os.path.join(noise_dir, params['audioformat']))
shuffle(params['noisefilenames'])
# Invoke multiple processes and fan out calls to main_gen() to these processes
global clean_counter, noise_counter
clean_counter = multiprocessing.Value('i', 0)
noise_counter = multiprocessing.Value('i', 0)
multi_pool = multiprocessing.Pool(processes=PROCESSES, initializer = init, initargs = (clean_counter, noise_counter, ))
fileindices = range(params['num_files'])
output_lists = multi_pool.starmap(main_gen, zip(repeat(params), fileindices))
flat_output_lists = []
num_lists = 6
for i in range(num_lists):
flat_output_lists.append(extract_list(output_lists, i))
# Create log directory if needed, and write log files of clipped and low activity files
log_dir = utils.get_dir(cfg, 'log_dir', 'Logs')
utils.write_log_file(log_dir, 'source_files.csv', flat_output_lists[0] + flat_output_lists[3])
utils.write_log_file(log_dir, 'clipped_files.csv', flat_output_lists[1] + flat_output_lists[4])
utils.write_log_file(log_dir, 'low_activity_files.csv', flat_output_lists[2] + flat_output_lists[5])
# Compute and print stats about percentange of clipped and low activity files
total_clean = len(flat_output_lists[0]) + len(flat_output_lists[1]) + len(flat_output_lists[2])
total_noise = len(flat_output_lists[3]) + len(flat_output_lists[4]) + len(flat_output_lists[5])
pct_clean_clipped = round(len(flat_output_lists[1])/total_clean*100, 1)
pct_noise_clipped = round(len(flat_output_lists[4])/total_noise*100, 1)
pct_clean_low_activity = round(len(flat_output_lists[2])/total_clean*100, 1)
pct_noise_low_activity = round(len(flat_output_lists[5])/total_noise*100, 1)
print("Of the " + str(total_clean) + " clean speech files analyzed, " + str(pct_clean_clipped) + \
"% had clipping, and " + str(pct_clean_low_activity) + "% had low activity " + \
"(below " + str(params['clean_activity_threshold']*100) + "% active percentage)")
print("Of the " + str(total_noise) + " noise files analyzed, " + str(pct_noise_clipped) + \
"% had clipping, and " + str(pct_noise_low_activity) + "% had low activity " + \
"(below " + str(params['noise_activity_threshold']*100) + "% active percentage)")
if __name__ == '__main__':
main_body()