都有哪些维度可以进行数据库调优?简言之:
- 索引失效、没有充分利用到索引——建立索引
- 关联查询太多JOIN(设计缺陷或不得已的需求)——SQL优化
- 服务器调优及各个参数设置(缓冲、线程数等)——调整my.cnf
- 数据过多——分库分表
关于数据库调优的知识非常分散。不同的DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相同。这里我们分为三个章节进行细致讲解。
虽然SQL查询优化的技术有很多,但是大方向上完全可以分成物理查询优化
和逻辑查询优化
两大块。
- 物理查询优化是通过
索引
和表连接方式
等技术来进行优化,这里重点需要掌握索引的使用。 - 逻辑查询优化就是通过SQL
等价变换
提升查询效率,直白一点就是说,换一种查询写法效率可能更高。
学员表
插 50万
条, 班级表
插 1万
条。
CREATE DATABASE atguigudb2;
USE atguigudb2;
步骤1:建表
CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
#CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
步骤2:设置参数
- 命令开启:允许创建函数设置:
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。
步骤3:创建函数
保证每条数据都不同。
#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;
#假如要删除
#drop function rand_string;
随机产生班级编号
#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
DECLARE i INT DEFAULT 0;
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
RETURN i;
END //
DELIMITER ;
#假如要删除
#drop function rand_num;
步骤4:创建存储过程
#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0; #设置手动提交事务
REPEAT #循环
SET i = i + 1; #赋值
INSERT INTO student (stuno, name ,age ,classId ) VALUES
((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000));
UNTIL i = max_num
END REPEAT;
COMMIT; #提交事务
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_stu;
创建往class表中插入数据的存储过程
#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO class ( classname,address,monitor ) VALUES
(rand_string(8),rand_string(10),rand_num(1,100000));
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;
步骤5:调用存储过程
class
#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);
stu
#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);
步骤6:删除某表上的索引
创建存储过程
DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE ct INT DEFAULT 0;
DECLARE _index VARCHAR(200) DEFAULT '';
DECLARE _cur CURSOR FOR SELECT index_name FROM
information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
#若没有数据返回,程序继续,并将变量done设为2
OPEN _cur;
FETCH _cur INTO _index;
WHILE _index<>'' DO
SET @str = CONCAT("drop index " , _index , " on " , tablename );
PREPARE sql_str FROM @str ;
EXECUTE sql_str;
DEALLOCATE PREPARE sql_str;
SET _index='';
FETCH _cur INTO _index;
END WHILE;
CLOSE _cur;
END //
DELIMITER ;
执行存储过程
CALL proc_drop_index("dbname","tablename");
系统中经常出现的sql语句如下:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
建立索引前执行:(关注执行时间)
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.28 sec)
建立索引
CREATE INDEX idx_age ON student(age);
CREATE INDEX idx_age_classid ON student(age,classId);
CREATE INDEX idx_age_classid_name ON student(age,classId,name);
建立索引后执行:
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.01 sec)
在MySQL建立联合索引时会遵守最佳左前缀原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。
举例1:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';
举例2:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';
举例3:索引idx_age_classid_name
还能否正常使用?
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=4 AND student.age=30 AND student.name = 'abcd';
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';
虽然可以正常使用,但是只有部分被使用到了。
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';
完全没有使用上索引。
结论:MySQL可以为多个字段创建索引,一个索引可以包含16个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有用这些字段中第一个字段时,多列(或联合)索引不会被使用。
拓展:Alibaba《Java开发手册》
索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。
如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:
可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂
成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗
!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增
,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT
,让存储引擎自己为表生成主键,而不是我们手动插入 , 比如: person_info
表:
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id
拥有 AUTO_INCREMENT
属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。
-
这两条sql哪种写法更好
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
-
创建索引
CREATE INDEX idx_name ON student(NAME);
-
第一种:索引优化生效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%'; +---------+---------+--------+------+---------+ | id | stuno | name | age | classId | +---------+---------+--------+------+---------+ | 5301379 | 1233401 | AbCHEa | 164 | 259 | | 7170042 | 3102064 | ABcHeB | 199 | 161 | | 1901614 | 1833636 | ABcHeC | 226 | 275 | | 5195021 | 1127043 | abchEC | 486 | 72 | | 4047089 | 3810031 | AbCHFd | 268 | 210 | | 4917074 | 849096 | ABcHfD | 264 | 442 | | 1540859 | 141979 | abchFF | 119 | 140 | | 5121801 | 1053823 | AbCHFg | 412 | 327 | | 2441254 | 2373276 | abchFJ | 170 | 362 | | 7039146 | 2971168 | ABcHgI | 502 | 465 | | 1636826 | 1580286 | ABcHgK | 71 | 262 | | 374344 | 474345 | abchHL | 367 | 212 | | 1596534 | 169191 | AbCHHl | 102 | 146 | ... | 5266837 | 1198859 | abclXe | 292 | 298 | | 8126968 | 4058990 | aBClxE | 316 | 150 | | 4298305 | 399962 | AbCLXF | 72 | 423 | | 5813628 | 1745650 | aBClxF | 356 | 323 | | 6980448 | 2912470 | AbCLXF | 107 | 78 | | 7881979 | 3814001 | AbCLXF | 89 | 497 | | 4955576 | 887598 | ABcLxg | 121 | 385 | | 3653460 | 3585482 | AbCLXJ | 130 | 174 | | 1231990 | 1283439 | AbCLYH | 189 | 429 | | 6110615 | 2042637 | ABcLyh | 157 | 40 | +---------+---------+--------+------+---------+ 401 rows in set, 1 warning (0.01 sec)
-
第二种:索引优化失效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc'; +---------+---------+--------+------+---------+ | id | stuno | name | age | classId | +---------+---------+--------+------+---------+ | 5301379 | 1233401 | AbCHEa | 164 | 259 | | 7170042 | 3102064 | ABcHeB | 199 | 161 | | 1901614 | 1833636 | ABcHeC | 226 | 275 | | 5195021 | 1127043 | abchEC | 486 | 72 | | 4047089 | 3810031 | AbCHFd | 268 | 210 | | 4917074 | 849096 | ABcHfD | 264 | 442 | | 1540859 | 141979 | abchFF | 119 | 140 | | 5121801 | 1053823 | AbCHFg | 412 | 327 | | 2441254 | 2373276 | abchFJ | 170 | 362 | | 7039146 | 2971168 | ABcHgI | 502 | 465 | | 1636826 | 1580286 | ABcHgK | 71 | 262 | | 374344 | 474345 | abchHL | 367 | 212 | | 1596534 | 169191 | AbCHHl | 102 | 146 | ... | 5266837 | 1198859 | abclXe | 292 | 298 | | 8126968 | 4058990 | aBClxE | 316 | 150 | | 4298305 | 399962 | AbCLXF | 72 | 423 | | 5813628 | 1745650 | aBClxF | 356 | 323 | | 6980448 | 2912470 | AbCLXF | 107 | 78 | | 7881979 | 3814001 | AbCLXF | 89 | 497 | | 4955576 | 887598 | ABcLxg | 121 | 385 | | 3653460 | 3585482 | AbCLXJ | 130 | 174 | | 1231990 | 1283439 | AbCLYH | 189 | 429 | | 6110615 | 2042637 | ABcLyh | 157 | 40 | +---------+---------+--------+------+---------+ 401 rows in set, 1 warning (3.62 sec)
type为“ALL”,表示没有使用到索引,查询时间为 3.62 秒,查询效率较之前低很多。
再举例:
-
student表的字段stuno上设置有索引
CREATE INDEX idx_sno ON student(stuno);
-
索引优化失效:(假设:student表的字段stuno上设置有索引)
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;
运行结果:
-
索引优化生效:
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;
再举例:
-
student表的字段name上设置有索引
CREATE INDEX idx_name ON student(NAME);
EXPLAIN SELECT id, stuno, name FROM student WHERE SUBSTRING(name, 1,3)='abc';
-
索引优化生效
EXPLAIN SELECT id, stuno, NAME FROM student WHERE NAME LIKE 'abc%';
下列哪个sql语句可以用到索引。(假设name字段上设置有索引)
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;
# 使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';
name=123发生类型转换,索引失效。
- 系统经常出现的sql如下:
ALTER TABLE student DROP INDEX idx_name;
ALTER TABLE student DROP INDEX idx_age;
ALTER TABLE student DROP INDEX idx_age_classid;
EXPLAIN SELECT SQL_NO_CACHE * FROM student
WHERE student.age=30 AND student.classId>20 AND student.name = 'abc' ;
- 那么索引 idx_age_classId_name 这个索引还能正常使用么?
- 不能,范围右边的列不能使用。比如:(<) (<=) (>) (>=) 和 between 等
- 如果这种sql出现较多,应该建立:
create index idx_age_name_classId on student(age,name,classId);
- 将范围查询条件放置语句最后:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20;
应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后。(创建的联合索引中,务必把范围涉及到的字段写在最后)
- 效果
- 为name字段创建索引
CREATE INDEX idx_name ON student(NAME);
- 查看索引是否失效
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name <> 'abc';
或者
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name != 'abc';
场景举例:用户提出需求,将财务数据,产品利润金额不等于0的都统计出来。
- IS NULL: 可以触发索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;
- IS NOT NULL: 无法触发索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;
结论:最好在设计数据库的时候就将
字段设置为 NOT NULL 约束
,比如你可以将 INT 类型的字段,默认值设置为0。将字符类型的默认值设置为空字符串('')。扩展:同理,在查询中使用
not like
也无法使用索引,导致全表扫描。
在使用LIKE关键字进行查询的查询语句中,如果匹配字符串的第一个字符为'%',索引就不会起作用。只有'%'不在第一个位置,索引才会起作用。
- 使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE 'ab%';
- 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE '%ab%';
拓展:Alibaba《Java开发手册》
【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
在WHERE子句中,如果在OR前的条件列进行了索引,而在OR后的条件列没有进行索引,那么索引会失效。也就是说,OR前后的两个条件中的列都是索引时,查询中才使用索引。
因为OR的含义就是两个只要满足一个即可,因此只有一个条件列进行了索引是没有意义的
,只要有条件列没有进行索引,就会进行全表扫描
,因此所以的条件列也会失效。
查询语句使用OR关键字的情况:
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100;
因为classId字段上没有索引,所以上述查询语句没有使用索引。
#使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR name = 'Abel';
因为age字段和name字段上都有索引,所以查询中使用了索引。你能看到这里使用到了index_merge
,简单来说index_merge就是对age和name分别进行了扫描,然后将这两个结果集进行了合并。这样做的好处就是避免了全表扫描
。
统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不 同的 字符集
进行比较前需要进行 转换
会造成索引失效。
**练习:**假设:index(a,b,c)
一般性建议
- 对于单列索引,尽量选择针对当前query过滤性更好的索引
- 在选择组合索引的时候,当前query中过滤性最好的字段在索引字段顺序中,位置越靠前越好。
- 在选择组合索引的时候,尽量选择能够当前query中where子句中更多的索引。
- 在选择组合索引的时候,如果某个字段可能出现范围查询时,尽量把这个字段放在索引次序的最后面。
总之,书写SQL语句时,尽量避免造成索引失效的情况
# 分类
CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);
#向分类表中添加20条记录
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `type`(card) VALUES(FLOOR(1 + (RAND() * 20)));
#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
下面开始 EXPLAIN 分析
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
结论:type 有All
添加索引优化
ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引
。
ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
接着:
DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)
换成 inner join(MySQL自动选择驱动表)
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
添加索引优化
ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的
接着:
DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;
接着:
ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;
接着:
#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON `type`.card = book.card;
图中发现,由于type表数据大于book表数据,MySQL选择将type作为被驱动表。
join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会很长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。
驱动表就是主表,被驱动表就是从表、非驱动表。
- 对于内连接来说:
SELECT * FROM A JOIN B ON ...
A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看。
- 对于外连接来说:
SELECT * FROM A LEFT JOIN B ON ...
# 或
SELECT * FROM B RIGHT JOIN A ON ...
通常,大家会认为A就是驱动表,B就是被驱动表。但也未必。测试如下:
CREATE TABLE a(f1 INT, f2 INT, INDEX(f1)) ENGINE=INNODB;
CREATE TABLE b(f1 INT, f2 INT) ENGINE=INNODB;
INSERT INTO a VALUES(1,1),(2,2),(3,3),(4,4),(5,5),(6,6);
INSERT INTO b VALUES(3,3),(4,4),(5,5),(6,6),(7,7),(8,8);
SELECT * FROM b;
# 测试1
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) WHERE (a.f2=b.f2);
# 测试2
EXPLAIN SELECT * FROM a LEFT JOIN b ON(a.f1=b.f1) AND (a.f2=b.f2);
算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result.. 以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:
可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B=10万次。开销统计如下:
当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Loop Join优化算法。
Index Nested-Loop Join其优化的思路主要是为了减少内存表数据的匹配次数
,所以要求被驱动表上必须有索引
才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内存表的每条记录去进行比较,这样极大的减少了对内存表的匹配次数。
驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。
如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。
注意:
这里缓存的不只是关联表的列,select后面的列也会缓存起来。
在一个有N个join关联的sql中会分配N-1个join buffer。所以查询的时候尽量减少不必要的字段,可以让join buffer中可以存放更多的列。
参数设置:
- block_nested_loop
通过show variables like '%optimizer_switch%
查看 block_nested_loop
状态。默认是开启的。
- join_buffer_size
驱动表能不能一次加载完,要看join buffer能不能存储所有的数据,默认情况下join_buffer_size=256k
。
mysql> show variables like '%join_buffer%';
join_buffer_size的最大值在32位操作系统可以申请4G,而在64位操作系统下可以申请大于4G的Join Buffer空间(64位Windows除外,其大值会被截断为4GB并发出警告)。
1、整体效率比较:INLJ > BNLJ > SNLJ
2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是表行数 * 每行大小)
select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100; # 推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100; # 不推荐
3、为被驱动表匹配的条件增加索引(减少内存表的循环匹配次数)
4、增大join buffer size的大小(一次索引的数据越多,那么内层包的扫描次数就越少)
5、减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多)
从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join
-
Nested Loop:
对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。
-
Hash Join是做
大数据集连接
时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表
,然后扫描较大的表并探测散列表,找出与Hash表匹配的行。- 这种方式适合于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。
- 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成
若干不同的分区
,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。 - 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1 = B.COL2),这是由Hash的特点决定的。
- 保证被驱动表的JOIN字段已经创建了索引
- 需要JOIN 的字段,数据类型保持绝对一致。
- LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。
- INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。
- 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
- 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。
- 衍生表建不了索引
MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结 果作为另一个SELECT语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作
。
**子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子 查询的执行效率不高。**原因:
① 执行子查询时,MySQL需要为内层查询语句的查询结果 建立一个临时表 ,然后外层查询语句从临时表 中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的CPU和IO资源,产生大量的慢查询。
② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会 受到一定的影响。
③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
**在MySQL中,可以使用连接(JOIN)查询来替代子查询。**连接查询 不需要建立临时表
,其 速度比子查询
要快 ,如果查询中使用索引的话,性能就会更好。
举例1:查询学生表中是班长的学生信息
- 使用子查询
# 创建班级表中班长的索引
CREATE INDEX idx_monitor ON class(monitor);
EXPLAIN SELECT * FROM student stu1
WHERE stu1.`stuno` IN (
SELECT monitor
FROM class c
WHERE monitor IS NOT NULL
)
- 推荐使用多表查询
EXPLAIN SELECT stu1.* FROM student stu1 JOIN class c
ON stu1.`stuno` = c.`monitor`
WHERE c.`monitor` is NOT NULL;
举例2:取所有不为班长的同学
- 不推荐
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a
WHERE a.stuno NOT IN (
SELECT monitor FROM class b
WHERE monitor IS NOT NULL
);
执行结果如下:
- 推荐:
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a LEFT OUTER JOIN class b
ON a.stuno = b.monitor
WHERE b.monitor IS NULL;
结论:尽量不要使用NOT IN或者NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代
问题:在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?
回答:
在MySQL中,支持两种排序方式,分别是 FileSort
和 Index
排序。
- Index 排序中,索引可以保证数据的有序性,不需要再进行排序,
效率更高
。 - FileSort 排序则一般在
内存中
进行排序,占用CPU较多
。如果待排结果较大,会产生临时文件 I/O 到磁盘进行排序的情况,效率较低。
优化建议:
- SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中
避免全表扫描
,在 ORDER BY 子句避免使用 FileSort 排序
。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。 - 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列; 如果不同就使用联合索引。
- 无法使用 Index 时,需要对 FileSort 方式进行调优。
删除student表和class表中已创建的索引。
# 方式1
DROP INDEX idx_monitor ON class;
DROP INDEX idx_cid ON student;
DROP INDEX idx_age ON student;
DROP INDEX idx_name ON student;
DROP INDEX idx_age_name_classId ON student;
DROP INDEX idx_age_classId_name ON student;
# 方式2
call proc_drop_index('atguigudb2','student';)
以下是否能使用到索引,能否去掉using filesort
过程一:
过程二: order by 时不limit,索引失效
过程三:order by 时顺序错误,索引失效
过程四:order by 时规则不一致,索引失效(顺序错,不索引;方向反,不索引)
结论:ORDER BY 子句,尽量使用 Index 方式排序,避免使用 FileSort 方式排序
过程五:无过滤,不索引
小结
INDEX a_b_c(a,b,c)
order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC
如果WHERE使用索引的最左前缀定义为常量,则order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c
不能使用索引进行排序
- ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */
- WHERE g = const ORDER BY b,c /*丢失a索引*/
- WHERE a = const ORDER BY c /*丢失b索引*/
- WHERE a = const ORDER BY a,d /*d不是索引的一部分*/
- WHERE a in (...) ORDER BY b,c /*对于排序来说,多个相等条件也是范围查询*/
ORDER BY子句,尽量使用Index方式排序,避免使用FileSort方式排序。
执行案例前先清除student上的索引,只留主键:
DROP INDEX idx_age ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_age_classid_name ON student;
#或者
call proc_drop_index('atguigudb2','student');
场景:查询年龄为30岁的,且学生编号小于101000的学生,按用户名称排序
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
查询结果如下:
mysql> SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
+---------+--------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+--------+--------+------+---------+
| 922 | 100923 | elTLXD | 30 | 249 |
| 3723263 | 100412 | hKcjLb | 30 | 59 |
| 3724152 | 100827 | iHLJmh | 30 | 387 |
| 3724030 | 100776 | LgxWoD | 30 | 253 |
| 30 | 100031 | LZMOIa | 30 | 97 |
| 3722887 | 100237 | QzbJdx | 30 | 440 |
| 609 | 100610 | vbRimN | 30 | 481 |
| 139 | 100140 | ZqFbuR | 30 | 351 |
+---------+--------+--------+------+---------+
8 rows in set, 1 warning (3.16 sec)
结论:type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
方案一: 为了去掉filesort我们可以把索引建成
#创建新索引
CREATE INDEX idx_age_name ON student(age,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
这样我们优化掉了 using filesort
查询结果如下:
方案二:尽量让where的过滤条件和排序使用上索引
建一个三个字段的组合索引:
DROP INDEX idx_age_name ON student;
CREATE INDEX idx_age_stuno_name ON student (age,stuno,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
我们发现using filesort依然存在,所以name并没有用到索引,而且type还是range光看名字其实并不美好。原因是,因为stuno是一个范围过滤
,所以索引后面的字段不会在使用索引了 。
结果如下:
mysql> SELECT SQL_NO_CACHE * FROM student
-> WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id | stuno | name | age | classId |
+-----+--------+--------+------+---------+
| 167 | 100168 | AClxEF | 30 | 319 |
| 323 | 100324 | bwbTpQ | 30 | 654 |
| 651 | 100652 | DRwIac | 30 | 997 |
| 517 | 100518 | HNSYqJ | 30 | 256 |
| 344 | 100345 | JuepiX | 30 | 329 |
| 905 | 100906 | JuWALd | 30 | 892 |
| 574 | 100575 | kbyqjX | 30 | 260 |
| 703 | 100704 | KJbprS | 30 | 594 |
| 723 | 100724 | OTdJkY | 30 | 236 |
| 656 | 100657 | Pfgqmj | 30 | 600 |
| 982 | 100983 | qywLqw | 30 | 837 |
| 468 | 100469 | sLEKQW | 30 | 346 |
| 988 | 100989 | UBYqJl | 30 | 457 |
| 173 | 100174 | UltkTN | 30 | 830 |
| 332 | 100333 | YjWiZw | 30 | 824 |
+-----+--------+--------+------+---------+
15 rows in set, 1 warning (0.00 sec)
结果竟然有 filesort的 sql 运行速度, 超过了已经优化掉 filesort的 sql ,而且快了很多,几乎一瞬间就出现了结果。
原因:
结论:
- 两个索引同时存在,mysql自动选择最优的方案。(对于这个例子,mysql选择 idx_age_stuno_name)。但是,
随着数据量的变化,选择的索引也会随之变化的
。- 当【范围条件】和【group by 或者 order by】的字段出现二选一时,优先观察条件字段的过 滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段上。反之,亦然。
思考:这里我们使用如下索引,是否可行?
DROP INDEX idx_age_stuno_name ON student;
CREATE INDEX idx_age_stuno ON student(age,stuno);
当然可以。
排序的字段若不在索引列上,则filesort会有两种算法:双路排序和单路排序
双路排序 (慢)
- MySQL 4.1之前是使用双路排序 ,字面意思就是两次扫描磁盘,最终得到数据, 读取行指针和 order by列 ,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取对应的数据输出
- 从磁盘取排序字段,在buffer进行排序,再从磁盘取其他字段 。
取一批数据,要对磁盘进行两次扫描,众所周知,IO是很耗时的,所以在mysql4.1之后,出现了第二种 改进的算法,就是单路排序。
单路排序 (快)
从磁盘读取查询需要的 所有列 ,按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空间, 因为它把每一行都保存在内存中了。
结论及引申出的问题
- 由于单路是后出的,总体而言好过双路
- 但是用单路有问题
- 在sort_buffer中,单路要比多路多占用很多空间,因为单路是把所有字段都取出,所以有可能取出的数据的总大小超出了
sort_buffer
的容量,导致每次只能取sort_buffer
容量大小的数据,进行排序(创建tmp文件,多路合并),排完再取sort_buffer容量大小,再排...从而多次I/O。 - 单路本来想省一次I/O操作,反而导致了大量的I/O操作,反而得不偿失。
- 在sort_buffer中,单路要比多路多占用很多空间,因为单路是把所有字段都取出,所以有可能取出的数据的总大小超出了
优化策略
1. 尝试提高 sort_buffer_size
2. 尝试提高 max_length_for_sort_data
3. Order by 时select * 是一个大忌。最好只Query需要的字段。
- group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
- group by 先排序再分组,遵照索引建的最佳左前缀法则
- 当无法使用索引列,增大 max_length_for_sort_data 和 sort_buffer_size 参数的设置
- where效率高于having,能写在where限定的条件就不要写在having中了
- 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
- 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行 以内,否则SQL会很慢。
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;
优化思路二
该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列 (即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是, 索引列+主键
包含 SELECT 到 FROM之间查询的列
。
举例一:
# 删除之前的索引
DROP INDEX idx_age_stuno ON student;
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT * FROM student WHERE age <> 20;
举例二:
EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT id,age,NAME FROM student WHERE NAME LIKE '%abc';
上述都使用到了声明的索引,下面的情况则不然,查询列依然多了classId,结果是未使用到索引:
EXPLAIN SELECT id,age,NAME,classId FROM student WHERE NAME LIKE '%abc';
有一张教师表,表定义如下:
create table teacher(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;
讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
mysql> select col1, col2 from teacher where email='xxx';
如果email这个字段上没有索引,那么这个语句就只能做 全表扫描
。
MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字 符串。
mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。
以及
如果使用的是index1(即email整个字符串的索引结构),执行顺序是这样的:
- 从index1索引树找到满足索引值是’ [email protected]’的这条记录,取得ID2的值;
- 到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
- 取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email=' [email protected] ’的 条件了,循环结束。
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是index2(即email(6)索引结构),执行顺序是这样的:
- 从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
- 到主键上查到主键值是ID1的行,判断出email的值不是’ [email protected] ’,这行记录丢弃;
- 取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到ID索引上取整行然 后判断,这次值对了,将这行记录加入结果集;
- 重复上一步,直到在idxe2上取到的值不是’zhangs’时,循环结束。
也就是说**使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。**前面 已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。
结论: 使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。
- 默认情况下启动索引条件下推。可以通过设置系统变量
optimizer_switch
控制:index_condition_pushdown
# 打开索引下推
SET optimizer_switch = 'index_condition_pushdown=on';
# 关闭索引下推
SET optimizer_switch = 'index_condition_pushdown=off';
- 当使用索引条件下推是,
EXPLAIN
语句输出结果中Extra
列内容显示为Using index condition
。
- 主键索引 (简图)
二级索引zip_last_first (简图,这里省略了数据页等信息)
- 如果表的访问类型为 range 、 ref 、 eq_ref 或者 ref_or_null 可以使用ICP。
- ICP可以使用
InnDB
和MyISAM
表,包括分区表InnoDB
和MyISAM
表 - 对于
InnoDB
表,ICP仅用于二级索引
。ICP的目标是减少全行读取次数,从而减少I/O操作。 - 当SQL使用覆盖索引时,不支持ICP优化方法。因为这种情况下使用ICP不会减少I/O。
- 相关子查询的条件不能使用ICP
从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。
这个表的建表语句是:
mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。
假设,执行查询的语句是 select id from test where k=5。
- 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一 个不满足k=5条件的记录。
- 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检 索。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微 。
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下change buffer。
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中
,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了 访问这个数据页
会触 发merge外,系统有 后台线程会定期
merge。在 数据库正常关闭(shutdown)
的过程中,也会执行merge 操作。
如果能够将更新操作先记录在change buffer, 减少读磁盘
,语句的执行速度会得到明显的提升。而且, 数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存
,提高内存利用率。
唯一索引的更新就不能使用change buffer
,实际上也只有普通索引可以使用。
如果要在这张表中插入一个新记录(4,400)的话,InnoDB的处理流程是怎样的?
- 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是 对 更新性能 的影响。所以,建议你 尽量选择普通索引 。
- 在实际使用中会发现, 普通索引 和 change buffer 的配合使用,对于 数据量大 的表的更新优化 还是很明显的。
- 如果所有的更新后面,都马上 伴随着对这个记录的查询 ,那么你应该 关闭change buffer 。而在 其他情况下,change buffer都能提升更新性能。
- 由于唯一索引用不上change buffer的优化机制,因此如果 业务可以接受 ,从性能角度出发建议优 先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?
- 首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能 问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。 这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一 个排查思路。
- 然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年, 然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率, 可以考虑把表里面的唯一索引改成普通索引。
问题:
不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?
回答:
问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和 SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?
答:
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过查询数据字典 将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用 覆盖索引
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放 的资源而减少。
COMMIT 所释放的资源:
- 回滚段上用于恢复数据的信息
- 被程序语句获得的锁
- redo / undo log buffer 中的空间
- 管理上述 3 种资源中的内部花费
聊一个实际问题:淘宝的数据库,主键是如何设计的?
某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显的错误就是关于MySQL的主键设计。
大部分人的回答如此自信:用8字节的 BIGINT 做主键,而不要用INT。 错
!
这样的回答,只站在了数据库这一层,而没有 从业务的角度
思考主键。主键就是一个自增ID吗?站在 2022年的新年档口,用自增做主键,架构设计上可能 连及格都拿不到
。
自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除 了简单,其他都是缺点,总体来看存在以下几方面的问题:
-
可靠性不高
存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。
-
**安全性不高 **
对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的 值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。
-
性能差
自增ID的性能较差,需要在数据库服务器端生成。
-
交互多
业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的 网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销。
-
**局部唯一性 **
最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都 是唯一的。对于目前分布式系统来说,这简直就是噩梦。
为了能够唯一地标识一个会员的信息,需要为 会员信息表 设置一个主键。那么,怎么为这个表设置主 键,才能达到我们理想的目标呢? 这里我们考虑业务字段做主键。
表数据如下:
在这个表里,哪个字段比较合适呢?
- 选择卡号(cardno)
会员卡号(cardno)看起来比较合适,因为会员卡号不能为空,而且有唯一性,可以用来 标识一条会员 记录。
mysql> CREATE TABLE demo.membermaster
-> (
-> cardno CHAR(8) PRIMARY KEY, -- 会员卡号为主键
-> membername TEXT,
-> memberphone TEXT,
-> memberpid TEXT,
-> memberaddress TEXT,
-> sex TEXT,
-> birthday DATETIME
-> );
Query OK, 0 rows affected (0.06 sec)
不同的会员卡号对应不同的会员,字段“cardno”唯一地标识某一个会员。如果都是这样,会员卡号与会 员一一对应,系统是可以正常运行的。
但实际情况是, 会员卡号可能存在重复使用 的情况。比如,张三因为工作变动搬离了原来的地址,不再 到商家的门店消费了 (退还了会员卡),于是张三就不再是这个商家门店的会员了。但是,商家不想让 这个会 员卡空着,就把卡号是“10000001”的会员卡发给了王五。
从系统设计的角度看,这个变化只是修改了会员信息表中的卡号是“10000001”这个会员 信息,并不会影 响到数据一致性。也就是说,修改会员卡号是“10000001”的会员信息, 系统的各个模块,都会获取到修 改后的会员信息,不会出现“有的模块获取到修改之前的会员信息,有的模块获取到修改后的会员信息, 而导致系统内部数据不一致”的情况。因此,从 信息系统层面 上看是没问题的。
但是从使用 系统的业务层面 来看,就有很大的问题 了,会对商家造成影响。
比如,我们有一个销售流水表(trans),记录了所有的销售流水明细。2020 年 12 月 01 日,张三在门店 购买了一本书,消费了 89 元。那么,系统中就有了张三买书的流水记录,如下所示:
接着,我们查询一下 2020 年 12 月 01 日的会员销售记录:
mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 张三 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.00 sec)
如果会员卡“10000001”又发给了王五,我们会更改会员信息表。导致查询时:
mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 王五 | 书 | 1.000 | 89.00 | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.01 sec)
这次得到的结果是:王五在 2020 年 12 月 01 日,买了一本书,消费 89 元。显然是错误的!结论:千万 不能把会员卡号当做主键。
- 选择会员电话 或 身份证号
会员电话可以做主键吗?不行的。在实际操作中,手机号也存在 被运营商收回 ,重新发给别人用的情况。
那身份证号行不行呢?好像可以。因为身份证决不会重复,身份证号与一个人存在一一对 应的关系。可 问题是,身份证号属于 个人隐私 ,顾客不一定愿意给你。要是强制要求会员必须登记身份证号,会把很 多客人赶跑的。其实,客户电话也有这个问题,这也是我们在设计会员信息表的时候,允许身份证号和 电话都为空的原因。
所以,建议尽量不要用跟业务有关的字段做主键。毕竟,作为项目设计的技术人员,我们谁也无法预测 在项目的整个生命周期中,哪个业务字段会因为项目的业务需求而有重复,或者重用之类的情况出现。
经验: 刚开始使用 MySQL 时,很多人都很容易犯的错误是喜欢用业务字段做主键,想当然地认为了解业 务需求,但实际情况往往出乎意料,而更改主键设置的成本非常高。
在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键 淘宝是如何设计的呢?是自增ID 吗?
打开淘宝,看一下订单信息:
从上图可以发现,订单号不是自增ID!我们详细看下上述4个订单号:
1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113
订单号是19位的长度,且订单的最后5位都是一样的,都是08113。且订单号的前面14位部分是单调递增的。
大胆猜测,淘宝的订单ID设计应该是:
订单ID = 时间 + 去重字段 + 用户ID后6位尾号
这样的设计能做到全局唯一,且对分布式系统查询及其友好。
非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息。
核心业务 :主键设计至少应该是全局唯一且是单调递增
。全局唯一保证在各系统之间都是唯一的,单调 递增是希望插入时不影响数据库性能。
这里推荐最简单的一种主键设计:UUID。
UUID的特点:
全局唯一,占用36字节,数据无序,插入性能差。
认识UUID:
- 为什么UUID是全局唯一的?
- 为什么UUID占用36个字节?
- 为什么UUID是无序的?
MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)
我们以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:
为什么UUID是全局唯一的?
在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00 到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降 低到1/100ns。
时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC地址用于全局唯一。
为什么UUID占用36个字节?
UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。
为什么UUID是随机无序的呢?
因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。
改造UUID
若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0可以更换时间低位和时间高位的存储方式,这样UUID就是有序的UUID了。
MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符串用二进制类型保存,这样存储空间降低为了16字节。
可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行转化:
SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);
通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!
有序UUID性能测试
16字节的有序UUID,相比之前8字节的自增ID,性能和存储空间对比究竟如何呢?
我们来做一个测试,插入1亿条数据,每条数据占用500字节,含有3个二级索引,最终的结果如下所示:
从上图可以看到插入1亿条数据有序UUID是最快的,而且在实际业务使用中有序UUID在 业务端就可以生成
。还可以进一步减少SQL的交互次数。
另外,虽然有序UUID相比自增ID多了8个字节,但实际只增大了3G的存储空间,还可以接受。
在当今的互联网环境中,非常不推荐自增ID作为主键的数据库设计。更推荐类似有序UUID的全局 唯一的实现。
另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样 的主键设计就更为考验架构师的水平了。
如果不是MySQL8.0 肿么办?
手动赋值字段做主键!
比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。
可以在总部 MySQL 数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。
门店在添加会员的时候,先到总部 MySQL 数据库中获取这个最大值,在这个基础上加 1,然后用这个值 作为新会员的“id”,同时,更新总部 MySQL 数据库管理信息表中的当前会员编号的最大值。
这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进行操作,就解 决了各门店添加会员时会员编号冲突的问题。