Skip to content

Latest commit

 

History

History
1912 lines (1345 loc) · 68.2 KB

09_性能与分析工具的使用.md

File metadata and controls

1912 lines (1345 loc) · 68.2 KB

第09章_性能分析工具的使用

在数据库调优中,我们的目标是 响应时间更快, 吞吐量更大 。利用宏观的监控工具和微观的日志分析可以帮我们快速找到调优的思路和方式。

1. 数据库服务器的优化步骤

当我们遇到数据库调优问题的时候,该如何思考呢?这里把思考的流程整理成下面这张图。

整个流程划分成了 观察(Show status)行动(Action) 两个部分。字母 S 的部分代表观察(会使 用相应的分析工具),字母 A 代表的部分是行动(对应分析可以采取的行动)。

image-20220627162248635

image-20220627162345815

我们可以通过观察了解数据库整体的运行状态,通过性能分析工具可以让我们了解执行慢的SQL都有哪些,查看具体的SQL执行计划,甚至是SQL执行中的每一步的成本代价,这样才能定位问题所在,找到了问题,再采取相应的行动。

详细解释一下这张图:

image-20220627164046438

image-20220627164114562

2. 查看系统性能参数

在MySQL中,可以使用 SHOW STATUS 语句查询一些MySQL数据库服务器的性能参数、执行频率

SHOW STATUS语句语法如下:

SHOW [GLOBAL|SESSION] STATUS LIKE '参数';

一些常用的性能参数如下:

  • Connections:连接MySQL服务器的次数。
  • Uptime:MySQL服务器的上线时间。
  • Slow_queries:慢查询的次数。
  • Innodb_rows_read:Select查询返回的行数
  • Innodb_rows_inserted:执行INSERT操作插入的行数
  • Innodb_rows_updated:执行UPDATE操作更新的 行数
  • Innodb_rows_deleted:执行DELETE操作删除的行数
  • Com_select:查询操作的次数。
  • Com_insert:插入操作的次数。对于批量插入的 INSERT 操作,只累加一次。
  • Com_update:更新操作 的次数。
  • Com_delete:删除操作的次数。

若查询MySQL服务器的连接次数,则可以执行如下语句:

SHOW STATUS LIKE 'Connections';

若查询服务器工作时间,则可以执行如下语句:

SHOW STATUS LIKE 'Uptime';

若查询MySQL服务器的慢查询次数,则可以执行如下语句:

SHOW STATUS LIKE 'Slow_queries';

慢查询次数参数可以结合慢查询日志找出慢查询语句,然后针对慢查询语句进行表结构优化或者查询语句优化

再比如,如下的指令可以查看相关的指令情况:

SHOW STATUS LIKE 'Innodb_rows_%';

3. 统计SQL的查询成本: last_query_cost

一条SQL查询语句在执行前需要查询执行计划,如果存在多种执行计划的话,MySQL会计算每个执行计划所需要的成本,从中选择成本最小的一个作为最终执行的执行计划。

如果我们想要查看某条SQL语句的查询成本,可以在执行完这条SQL语句之后,通过查看当前会话中的last_query_cost变量值来得到当前查询的成本。它通常也是我们评价一个查询的执行效率的一个常用指标。这个查询成本对应的是SQL 语句所需要读取的读页的数量

我们依然使用第8章的 student_info 表为例:

CREATE TABLE `student_info` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `student_id` INT NOT NULL ,
    `name` VARCHAR(20) DEFAULT NULL,
    `course_id` INT NOT NULL ,
    `class_id` INT(11) DEFAULT NULL,
    `create_time` DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
    PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

如果我们想要查询 id=900001 的记录,然后看下查询成本,我们可以直接在聚簇索引上进行查找:

SELECT student_id, class_id, NAME, create_time FROM student_info WHERE id = 900001;

运行结果(1 条记录,运行时间为 0.042s )

然后再看下查询优化器的成本,实际上我们只需要检索一个页即可:

mysql> SHOW STATUS LIKE 'last_query_cost';
+-----------------+----------+
| Variable_name   |   Value  |
+-----------------+----------+
| Last_query_cost | 1.000000 |
+-----------------+----------+

如果我们想要查询 id 在 900001 到 9000100 之间的学生记录呢?

SELECT student_id, class_id, NAME, create_time FROM student_info WHERE id BETWEEN 900001 AND 900100;

运行结果(100 条记录,运行时间为 0.046s ):

然后再看下查询优化器的成本,这时我们大概需要进行 20 个页的查询。

mysql> SHOW STATUS LIKE 'last_query_cost';
+-----------------+-----------+
| Variable_name   |   Value   |
+-----------------+-----------+
| Last_query_cost | 21.134453 |
+-----------------+-----------+

你能看到页的数量是刚才的 20 倍,但是查询的效率并没有明显的变化,实际上这两个 SQL 查询的时间 基本上一样,就是因为采用了顺序读取的方式将页面一次性加载到缓冲池中,然后再进行查找。虽然 页 数量(last_query_cost)增加了不少 ,但是通过缓冲池的机制,并 没有增加多少查询时间 。

**使用场景:**它对于比较开销是非常有用的,特别是我们有好几种查询方式可选的时候。

SQL查询时一个动态的过程,从页加载的角度来看,我们可以得到以下两点结论:

  1. 位置决定效率。如果页就在数据库 缓冲池 中,那么效率是最高的,否则还需要从 内存 或者 磁盘 中进行读取,当然针对单个页的读取来说,如果页存在于内存中,会比在磁盘中读取效率高很多。
  2. 批量决定效率。如果我们从磁盘中对单一页进行随机读,那么效率是很低的(差不多10ms),而采用顺序读取的方式,批量对页进行读取,平均一页的读取效率就会提升很多,甚至要快于单个页面在内存中的随机读取。

所以说,遇到I/O并不用担心,方法找对了,效率还是很高的。我们首先要考虑数据存放的位置,如果是进程使用的数据就要尽量放到缓冲池中,其次我们可以充分利用磁盘的吞吐能力,一次性批量读取数据,这样单个页的读取效率也就得到了提升。

4. 定位执行慢的 SQL:慢查询日志

image-20220628173022699

4.1 开启慢查询日志参数

1. 开启 slow_query_log

在使用前,我们需要先查下慢查询是否已经开启,使用下面这条命令即可:

mysql > show variables like '%slow_query_log';

image-20220628173525966

我们可以看到 slow_query_log=OFF,我们可以把慢查询日志打开,注意设置变量值的时候需要使用 global,否则会报错:

mysql > set global slow_query_log='ON';

然后我们再来查看下慢查询日志是否开启,以及慢查询日志文件的位置:

image-20220628175226812

你能看到这时慢查询分析已经开启,同时文件保存在 /var/lib/mysql/atguigu02-slow.log 文件 中。

2. 修改 long_query_time 阈值

接下来我们来看下慢查询的时间阈值设置,使用如下命令:

mysql > show variables like '%long_query_time%';

image-20220628175353233

这里如果我们想把时间缩短,比如设置为 1 秒,可以这样设置:

#测试发现:设置global的方式对当前session的long_query_time失效。对新连接的客户端有效。所以可以一并
执行下述语句
mysql > set global long_query_time = 1;
mysql> show global variables like '%long_query_time%';

mysql> set long_query_time=1;
mysql> show variables like '%long_query_time%';

image-20220628175425922

补充:配置文件中一并设置参数

如下的方式相较于前面的命令行方式,可以看做是永久设置的方式。

修改 my.cnf 文件,[mysqld] 下增加或修改参数 long_query_time、slow_query_logslow_query_log_file 后,然后重启 MySQL 服务器。

[mysqld]
slow_query_log=ON  # 开启慢查询日志开关
slow_query_log_file=/var/lib/mysql/atguigu-low.log  # 慢查询日志的目录和文件名信息
long_query_time=3  # 设置慢查询的阈值为3秒,超出此设定值的SQL即被记录到慢查询日志
log_output=FILE

如果不指定存储路径,慢查询日志默认存储到MySQL数据库的数据文件夹下。如果不指定文件名,默认文件名为hostname_slow.log。

4.2 查看慢查询数目

查询当前系统中有多少条慢查询记录

SHOW GLOBAL STATUS LIKE '%Slow_queries%';

4.3 案例演示

步骤1. 建表

CREATE TABLE `student` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `stuno` INT NOT NULL ,
    `name` VARCHAR(20) DEFAULT NULL,
    `age` INT(3) DEFAULT NULL,
    `classId` INT(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

步骤2:设置参数 log_bin_trust_function_creators

创建函数,假如报错:

This function has none of DETERMINISTIC......
  • 命令开启:允许创建函数设置:
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。

步骤3:创建函数

随机产生字符串:(同上一章)

DELIMITER //
CREATE FUNCTION rand_string(n INT)
	RETURNS VARCHAR(255) #该函数会返回一个字符串
BEGIN
	DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
	DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
    	SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
    	SET i = i + 1;
    END WHILE;
    RETURN return_str;
END //
DELIMITER ;

# 测试
SELECT rand_string(10);

产生随机数值:(同上一章)

DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
    DECLARE i INT DEFAULT 0;
    SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
    RETURN i;
END //
DELIMITER ;

#测试:
SELECT rand_num(10,100);

步骤4:创建存储过程

DELIMITER //
CREATE PROCEDURE insert_stu1( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
    SET autocommit = 0; #设置手动提交事务
    REPEAT #循环
    SET i = i + 1; #赋值
    INSERT INTO student (stuno, NAME ,age ,classId ) VALUES
    ((START+i),rand_string(6),rand_num(10,100),rand_num(10,1000));
    UNTIL i = max_num
    END REPEAT;
    COMMIT; #提交事务
END //
DELIMITER ;

步骤5:调用存储过程

#调用刚刚写好的函数, 4000000条记录,从100001号开始

CALL insert_stu1(100001,4000000);

4.4 测试及分析

1. 测试

mysql> SELECT * FROM student WHERE stuno = 3455655;
+---------+---------+--------+------+---------+
|   id    |  stuno  |  name  | age  | classId |
+---------+---------+--------+------+---------+
| 3523633 | 3455655 | oQmLUr |  19  |    39   |
+---------+---------+--------+------+---------+
1 row in set (2.09 sec)

mysql> SELECT * FROM student WHERE name = 'oQmLUr';
+---------+---------+--------+------+---------+
|   id    |  stuno  |  name  |  age | classId |
+---------+---------+--------+------+---------+
| 1154002 | 1243200 | OQMlUR | 266  |   28    |
| 1405708 | 1437740 | OQMlUR | 245  |   439   |
| 1748070 | 1680092 | OQMlUR | 240  |   414   |
| 2119892 | 2051914 | oQmLUr | 17   |   32    |
| 2893154 | 2825176 | OQMlUR | 245  |   435   |
| 3523633 | 3455655 | oQmLUr | 19   |   39    |
+---------+---------+--------+------+---------+
6 rows in set (2.39 sec)

从上面的结果可以看出来,查询学生编号为“3455655”的学生信息花费时间为2.09秒。查询学生姓名为 “oQmLUr”的学生信息花费时间为2.39秒。已经达到了秒的数量级,说明目前查询效率是比较低的,下面 的小节我们分析一下原因。

2. 分析

show status like 'slow_queries';

image-20220628195650079

4.5 慢查询日志分析工具:mysqldumpslow

在生产环境中,如果要手工分析日志,查找、分析SQL,显然是个体力活,MySQL提供了日志分析工具 mysqldumpslow

查看mysqldumpslow的帮助信息

mysqldumpslow --help

image-20220628195821440

mysqldumpslow 命令的具体参数如下:

  • -a: 不将数字抽象成N,字符串抽象成S
  • -s: 是表示按照何种方式排序:
    • c: 访问次数
    • l: 锁定时间
    • r: 返回记录
    • t: 查询时间
    • al:平均锁定时间
    • ar:平均返回记录数
    • at:平均查询时间 (默认方式)
    • ac:平均查询次数
  • -t: 即为返回前面多少条的数据;
  • -g: 后边搭配一个正则匹配模式,大小写不敏感的;

举例:我们想要按照查询时间排序,查看前五条 SQL 语句,这样写即可:

mysqldumpslow -s t -t 5 /var/lib/mysql/atguigu01-slow.log
[root@bogon ~]# mysqldumpslow -s t -t 5 /var/lib/mysql/atguigu01-slow.log

Reading mysql slow query log from /var/lib/mysql/atguigu01-slow.log
Count: 1 Time=2.39s (2s) Lock=0.00s (0s) Rows=13.0 (13), root[root]@localhost
SELECT * FROM student WHERE name = 'S'

Count: 1 Time=2.09s (2s) Lock=0.00s (0s) Rows=2.0 (2), root[root]@localhost
SELECT * FROM student WHERE stuno = N

Died at /usr/bin/mysqldumpslow line 162, <> chunk 2.

工作常用参考:

#得到返回记录集最多的10个SQL
mysqldumpslow -s r -t 10 /var/lib/mysql/atguigu-slow.log

#得到访问次数最多的10个SQL
mysqldumpslow -s c -t 10 /var/lib/mysql/atguigu-slow.log

#得到按照时间排序的前10条里面含有左连接的查询语句
mysqldumpslow -s t -t 10 -g "left join" /var/lib/mysql/atguigu-slow.log

#另外建议在使用这些命令时结合 | 和more 使用 ,否则有可能出现爆屏情况
mysqldumpslow -s r -t 10 /var/lib/mysql/atguigu-slow.log | more

4.6 关闭慢查询日志

MySQL服务器停止慢查询日志功能有两种方法:

方式1:永久性方式

[mysqld]
slow_query_log=OFF

或者,把slow_query_log一项注释掉 或 删除

[mysqld]
#slow_query_log =OFF

重启MySQL服务,执行如下语句查询慢日志功能。

SHOW VARIABLES LIKE '%slow%'; #查询慢查询日志所在目录
SHOW VARIABLES LIKE '%long_query_time%'; #查询超时时长

方式2:临时性方式

使用SET语句来设置。

(1)停止MySQL慢查询日志功能,具体SQL语句如下。

SET GLOBAL slow_query_log=off;

(2)重启MySQL服务,使用SHOW语句查询慢查询日志功能信息,具体SQL语句如下。

SHOW VARIABLES LIKE '%slow%';
#以及
SHOW VARIABLES LIKE '%long_query_time%';

4.7 删除慢查询日志

使用SHOW语句显示慢查询日志信息,具体SQL语句如下。

SHOW VARIABLES LIKE `slow_query_log%`;

image-20220628203545536

从执行结果可以看出,慢查询日志的目录默认为MySQL的数据目录,在该目录下 手动删除慢查询日志文件 即可。

使用命令 mysqladmin flush-logs 来重新生成查询日志文件,具体命令如下,执行完毕会在数据目录下重新生成慢查询日志文件。

mysqladmin -uroot -p flush-logs slow

提示

慢查询日志都是使用mysqladmin flush-logs命令来删除重建的。使用时一定要注意,一旦执行了这个命令,慢查询日志都只存在新的日志文件中,如果需要旧的查询日志,就必须事先备份。

5. 查看 SQL 执行成本:SHOW PROFILE

show profile 在《逻辑架构》章节中讲过,这里作为复习。

show profile 是 MySQL 提供的可以用来分析当前会话中 SQL 都做了什么、执行的资源消耗工具的情况,可用于 sql 调优的测量。默认情况下处于关闭状态,并保存最近15次的运行结果。

我们可以在会话级别开启这个功能。

mysql > show variables like 'profiling';

image-20220628204922556

通过设置 profiling='ON' 来开启 show profile:

mysql > set profiling = 'ON';

image-20220628205029208

然后执行相关的查询语句。接着看下当前会话都有哪些 profiles,使用下面这条命令:

mysql > show profiles;

image-20220628205243769

你能看到当前会话一共有 2 个查询。如果我们想要查看最近一次查询的开销,可以使用:

mysql > show profile;

image-20220628205317257

mysql> show profile cpu,block io for query 2

image-20220628205354230

**show profile的常用查询参数: **

① ALL:显示所有的开销信息。

② BLOCK IO:显示块IO开销。

③ CONTEXT SWITCHES:上下文切换开销。

④ CPU:显示CPU开销信息。

⑤ IPC:显示发送和接收开销信息。

⑥ MEMORY:显示内存开销信 息。

⑦ PAGE FAULTS:显示页面错误开销信息。

⑧ SOURCE:显示和Source_function,Source_file, Source_line相关的开销信息。

⑨ SWAPS:显示交换次数开销信息。

日常开发需注意的结论:

converting HEAP to MyISAM: 查询结果太大,内存不够,数据往磁盘上搬了。

Creating tmp table:创建临时表。先拷贝数据到临时表,用完后再删除临时表。

Copying to tmp table on disk:把内存中临时表复制到磁盘上,警惕!

locked

如果在show profile诊断结果中出现了以上4条结果中的任何一条,则sql语句需要优化。

注意:

不过SHOW PROFILE命令将被启用,我们可以从 information_schema 中的 profiling 数据表进行查看。

6. 分析查询语句:EXPLAIN

6.1 概述

image-20220628210837301

1. 能做什么?

  • 表的读取顺序
  • 数据读取操作的操作类型
  • 哪些索引可以使用
  • 哪些索引被实际使用
  • 表之间的引用
  • 每张表有多少行被优化器查询

2. 官网介绍

https://dev.mysql.com/doc/refman/5.7/en/explain-output.html

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html

image-20220628211207436

3. 版本情况

  • MySQL 5.6.3以前只能 EXPLAIN SELECT ;MYSQL 5.6.3以后就可以 EXPLAIN SELECT,UPDATE, DELETE
  • 在5.7以前的版本中,想要显示 partitions 需要使用 explain partitions 命令;想要显示 filtered 需要使用 explain extended 命令。在5.7版本后,默认explain直接显示partitions和 filtered中的信息。

image-20220628211351678

6.2 基本语法

EXPLAIN 或 DESCRIBE语句的语法形式如下:

EXPLAIN SELECT select_options
或者
DESCRIBE SELECT select_options

如果我们想看看某个查询的执行计划的话,可以在具体的查询语句前边加一个 EXPLAIN ,就像这样:

mysql> EXPLAIN SELECT 1;

image-20220628212029574

EXPLAIN 语句输出的各个列的作用如下:

image-20220628212049096

在这里把它们都列出来知识为了描述一个轮廓,让大家有一个大致的印象。

6.3 数据准备

1. 建表

CREATE TABLE s1 (
    id INT AUTO_INCREMENT,
    key1 VARCHAR(100),
    key2 INT,
    key3 VARCHAR(100),
    key_part1 VARCHAR(100),
    key_part2 VARCHAR(100),
    key_part3 VARCHAR(100),
    common_field VARCHAR(100),
    PRIMARY KEY (id),
    INDEX idx_key1 (key1),
    UNIQUE INDEX idx_key2 (key2),
    INDEX idx_key3 (key3),
    INDEX idx_key_part(key_part1, key_part2, key_part3)
) ENGINE=INNODB CHARSET=utf8;
CREATE TABLE s2 (
    id INT AUTO_INCREMENT,
    key1 VARCHAR(100),
    key2 INT,
    key3 VARCHAR(100),
    key_part1 VARCHAR(100),
    key_part2 VARCHAR(100),
    key_part3 VARCHAR(100),
    common_field VARCHAR(100),
    PRIMARY KEY (id),
    INDEX idx_key1 (key1),
    UNIQUE INDEX idx_key2 (key2),
    INDEX idx_key3 (key3),
    INDEX idx_key_part(key_part1, key_part2, key_part3)
) ENGINE=INNODB CHARSET=utf8;

2. 设置参数 log_bin_trust_function_creators

创建函数,假如报错,需开启如下命令:允许创建函数设置:

set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。

3. 创建函数

DELIMITER //
CREATE FUNCTION rand_string1(n INT)
	RETURNS VARCHAR(255) #该函数会返回一个字符串
BEGIN
	DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
    DECLARE return_str VARCHAR(255) DEFAULT '';
    DECLARE i INT DEFAULT 0;
    WHILE i < n DO
        SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
        SET i = i + 1;
    END WHILE;
    RETURN return_str;
END //
DELIMITER ;

4. 创建存储过程

创建往s1表中插入数据的存储过程:

DELIMITER //
CREATE PROCEDURE insert_s1 (IN min_num INT (10),IN max_num INT (10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO s1 VALUES(
        (min_num + i),
        rand_string1(6),
        (min_num + 30 * i + 5),
        rand_string1(6),
        rand_string1(10),
        rand_string1(5),
        rand_string1(10),
        rand_string1(10));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END //
DELIMITER ;

创建往s2表中插入数据的存储过程:

DELIMITER //
CREATE PROCEDURE insert_s2 (IN min_num INT (10),IN max_num INT (10))
BEGIN
    DECLARE i INT DEFAULT 0;
    SET autocommit = 0;
    REPEAT
    SET i = i + 1;
    INSERT INTO s2 VALUES(
        (min_num + i),
        rand_string1(6),
        (min_num + 30 * i + 5),
        rand_string1(6),
        rand_string1(10),
        rand_string1(5),
        rand_string1(10),
        rand_string1(10));
    UNTIL i = max_num
    END REPEAT;
    COMMIT;
END //
DELIMITER ;

5. 调用存储过程

s1表数据的添加:加入1万条记录:

CALL insert_s1(10001,10000);

s2表数据的添加:加入1万条记录:

CALL insert_s2(10001,10000);

6.4 EXPLAIN各列作用

为了让大家有比较好的体验,我们调整了下 EXPLAIN 输出列的顺序。

1. table

不论我们的查询语句有多复杂,里边儿 包含了多少个表 ,到最后也是需要对每个表进行 单表访问 的,所 以MySQL规定EXPLAIN语句输出的每条记录都对应着某个单表的访问方法,该条记录的table列代表着该 表的表名(有时不是真实的表名字,可能是简称)。

mysql > EXPLAIN SELECT * FROM s1;

image-20220628221143339

这个查询语句只涉及对s1表的单表查询,所以 EXPLAIN 输出中只有一条记录,其中的table列的值为s1,表明这条记录是用来说明对s1表的单表访问方法的。

下边我们看一个连接查询的执行计划

mysql > EXPLAIN SELECT * FROM s1 INNER JOIN s2;

image-20220628221414097

可以看出这个连接查询的执行计划中有两条记录,这两条记录的table列分别是s1和s2,这两条记录用来分别说明对s1表和s2表的访问方法是什么。

2. id

我们写的查询语句一般都以 SELECT 关键字开头,比较简单的查询语句里只有一个 SELECT 关键字,比 如下边这个查询语句:

SELECT * FROM s1 WHERE key1 = 'a';

稍微复杂一点的连接查询中也只有一个 SELECT 关键字,比如:

SELECT * FROM s1 INNER JOIN s2
ON s1.key1 = s2.key1
WHERE s1.common_field = 'a';

但是下边两种情况下在一条查询语句中会出现多个SELECT关键字:

image-20220628221948512

mysql > EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';

image-20220628222055716

对于连接查询来说,一个SELECT关键字后边的FROM字句中可以跟随多个表,所以在连接查询的执行计划中,每个表都会对应一条记录,但是这些记录的id值都是相同的,比如:

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2;

image-20220628222251309

可以看到,上述连接查询中参与连接的s1和s2表分别对应一条记录,但是这两条记录对应的id都是1。这里需要大家记住的是,在连接查询的执行计划中,每个表都会对应一条记录,这些记录的id列的值是相同的,出现在前边的表表示驱动表,出现在后面的表表示被驱动表。所以从上边的EXPLAIN输出中我们可以看到,查询优化器准备让s1表作为驱动表,让s2表作为被驱动表来执行查询。

对于包含子查询的查询语句来说,就可能涉及多个SELECT关键字,所以在**包含子查询的查询语句的执行计划中,每个SELECT关键字都会对应一个唯一的id值,比如这样:

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key1 FROM s2) OR key3 = 'a';

image-20220629165122837

image-20220629170848349

# 查询优化器可能对涉及子查询的查询语句进行重写,转变为多表查询的操作。  
mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key2 FROM s2 WHERE common_field = 'a');

image-20220629165603072

可以看到,虽然我们的查询语句是一个子查询,但是执行计划中s1和s2表对应的记录的id值全部是1,这就表明查询优化器将子查询转换为了连接查询

对于包含UNION子句的查询语句来说,每个SELECT关键字对应一个id值也是没错的,不过还是有点儿特别的东西,比方说下边的查询:

# Union去重
mysql> EXPLAIN SELECT * FROM s1 UNION SELECT * FROM s2;

image-20220629165909340

image-20220629171104375

mysql> EXPLAIN SELECT * FROM s1 UNION ALL SELECT * FROM s2;

image-20220629171138065

小结:

  • id如果相同,可以认为是一组,从上往下顺序执行
  • 在所有组中,id值越大,优先级越高,越先执行
  • 关注点:id号每个号码,表示一趟独立的查询, 一个sql的查询趟数越少越好

3. select_type

image-20220629171611716

image-20220629171442624

具体分析如下:

  • SIMPLE

    查询语句中不包含UNION或者子查询的查询都算作是SIMPLE类型,比方说下边这个单表查询select_type的值就是SIMPLE:

    mysql> EXPLAIN SELECT * FROM s1;

image-20220629171840300

​ 当然,连接查询也算是 SIMPLE 类型,比如:

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2;

image-20220629171904912

  • PRIMARY

    对于包含UNION、UNION ALL或者子查询的大查询来说,它是由几个小查询组成的,其中最左边的那个查询的select_type的值就是PRIMARY,比方说:

    mysql> EXPLAIN SELECT * FROM s1 UNION SELECT * FROM s2;

    image-20220629171929924

    从结果中可以看到,最左边的小查询SELECT * FROM s1对应的是执行计划中的第一条记录,它的select_type的值就是PRIMARY

  • UNION

    对于包含UNION或者UNION ALL的大查询来说,它是由几个小查询组成的,其中除了最左边的那个小查询意外,其余的小查询的select_type值就是UNION,可以对比上一个例子的效果。

  • UNION RESULT

    MySQL 选择使用临时表来完成UNION查询的去重工作,针对该临时表的查询的select_type就是UNION RESULT, 例子上边有。

  • SUBQUERY

    如果包含子查询的查询语句不能够转为对应的semi-join的形式,并且该子查询是不相关子查询,并且查询优化器决定采用将该子查询物化的方案来执行该子查询时,该子查询的第一个SELECT关键字代表的那个查询的select_type就是SUBQUERY,比如下边这个查询:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key1 FROM s2) OR key3 = 'a';

    image-20220629172449267

  • DEPENDENT SUBQUERY

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key1 FROM s2 WHERE s1.key2 = s2.key2) OR key3 = 'a';

    image-20220629172525236

  • DEPENDENT UNION

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key1 FROM s2 WHERE key1 = 'a' UNION SELECT key1 FROM s1 WHERE key1 = 'b');

    image-20220629172555603

  • DERIVED

    mysql> EXPLAIN SELECT * FROM (SELECT key1, count(*) as c FROM s1 GROUP BY key1) AS derived_s1 where c > 1;

    image-20220629172622893

    从执行计划中可以看出,id为2的记录就代表子查询的执行方式,它的select_type是DERIVED, 说明该子查询是以物化的方式执行的。id为1的记录代表外层查询,大家注意看它的table列显示的是derived2,表示该查询时针对将派生表物化之后的表进行查询的。

  • MATERIALIZED

    当查询优化器在执行包含子查询的语句时,选择将子查询物化之后的外层查询进行连接查询时,该子查询对应的select_type属性就是DERIVED,比如下边这个查询:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN (SELECT key1 FROM s2);

    image-20220629172646367

  • UNCACHEABLE SUBQUERY

    不常用,就不多说了。

  • UNCACHEABLE UNION

    不常用,就不多说了。

4. partitions (可略)

-- 创建分区表,
-- 按照id分区,id<100 p0分区,其他p1分区
CREATE TABLE user_partitions (id INT auto_increment,
NAME VARCHAR(12),PRIMARY KEY(id))
PARTITION BY RANGE(id)(
PARTITION p0 VALUES less than(100),
PARTITION p1 VALUES less than MAXVALUE
);

image-20220629190304966

DESC SELECT * FROM user_partitions WHERE id>200;

查询id大于200(200>100,p1分区)的记录,查看执行计划,partitions是p1,符合我们的分区规则

image-20220629190335371

5. type ☆

执行计划的一条记录就代表着MySQL对某个表的 执行查询时的访问方法 , 又称“访问类型”,其中的 type 列就表明了这个访问方法是啥,是较为重要的一个指标。比如,看到type列的值是ref,表明MySQL即将使用ref访问方法来执行对s1表的查询。

完整的访问方法如下: system , const , eq_ref , ref , fulltext , ref_or_null , index_merge , unique_subquery , index_subquery , range , index , ALL

我们详细解释一下:

  • system

    当表中只有一条记录并且该表使用的存储引擎的统计数据是精确的,比如MyISAM、Memory,那么对该表的访问方法就是system。比方说我们新建一个MyISAM表,并为其插入一条记录:

    mysql> CREATE TABLE t(i int) Engine=MyISAM;
    Query OK, 0 rows affected (0.05 sec)
    
    mysql> INSERT INTO t VALUES(1);
    Query OK, 1 row affected (0.01 sec)

    然后我们看一下查询这个表的执行计划:

    mysql> EXPLAIN SELECT * FROM t;
    image-20220630164434315

    可以看到type列的值就是system了,

    测试,可以把表改成使用InnoDB存储引擎,试试看执行计划的type列是什么。ALL

  • const

    当我们根据主键或者唯一二级索引列与常数进行等值匹配时,对单表的访问方法就是const, 比如:

    mysql> EXPLAIN SELECT * FROM s1 WHERE id = 10005;
    image-20220630164724548
  • eq_ref

    在连接查询时,如果被驱动表是通过主键或者唯一二级索引列等值匹配的方式进行访问的(如果该主键或者唯一二级索引是联合索引的话,所有的索引列都必须进行等值比较)。则对该被驱动表的访问方法就是eq_ref,比方说:

    mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON s1.id = s2.id;
    image-20220630164802559

    从执行计划的结果中可以看出,MySQL打算将s2作为驱动表,s1作为被驱动表,重点关注s1的访问 方法是 eq_ref ,表明在访问s1表的时候可以 通过主键的等值匹配 来进行访问。

  • ref

    当通过普通的二级索引列与常量进行等值匹配时来查询某个表,那么对该表的访问方法就可能是ref,比方说下边这个查询:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';
    image-20220630164930020
  • fulltext

    全文索引

  • ref_or_null

    当对普通二级索引进行等值匹配查询,该索引列的值也可以是NULL值时,那么对该表的访问方法就可能是ref_or_null,比如说:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a' OR key1 IS NULL;
    image-20220630175133920
  • index_merge

    一般情况下对于某个表的查询只能使用到一个索引,但单表访问方法时在某些场景下可以使用Interseation、union、Sort-Union这三种索引合并的方式来执行查询。我们看一下执行计划中是怎么体现MySQL使用索引合并的方式来对某个表执行查询的:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a' OR key3 = 'a';
    image-20220630175511644

    从执行计划的 type 列的值是 index_merge 就可以看出,MySQL 打算使用索引合并的方式来执行 对 s1 表的查询。

  • unique_subquery

    类似于两表连接中被驱动表的eq_ref访问方法,unique_subquery是针对在一些包含IN子查询的查询语句中,如果查询优化器决定将IN子查询转换为EXISTS子查询,而且子查询可以使用到主键进行等值匹配的话,那么该子查询执行计划的type列的值就是unique_subquery,比如下边的这个查询语句:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key2 IN (SELECT id FROM s2 where s1.key1 = s2.key1) OR key3 = 'a';
    image-20220630180123913
  • index_subquery

    index_subqueryunique_subquery 类似,只不过访问子查询中的表时使用的是普通的索引,比如这样:

    mysql> EXPLAIN SELECT * FROM s1 WHERE common_field IN (SELECT key3 FROM s2 where s1.key1 = s2.key1) OR key3 = 'a';

image-20220703214407225

  • range

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN ('a', 'b', 'c');

    image-20220703214633338

    或者:

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'a' AND key1 < 'b';

    image-20220703214657251

  • index

    当我们可以使用索引覆盖,但需要扫描全部的索引记录时,该表的访问方法就是index,比如这样:

    mysql> EXPLAIN SELECT key_part2 FROM s1 WHERE key_part3 = 'a';

    image-20220703214844885

    上述查询中的所有列表中只有key_part2 一个列,而且搜索条件中也只有 key_part3 一个列,这两个列又恰好包含在idx_key_part这个索引中,可是搜索条件key_part3不能直接使用该索引进行refrange方式的访问,只能扫描整个idx_key_part索引的记录,所以查询计划的type列的值就是index

    再一次强调,对于使用InnoDB存储引擎的表来说,二级索引的记录只包含索引列和主键列的值,而聚簇索引中包含用户定义的全部列以及一些隐藏列,所以扫描二级索引的代价比直接全表扫描,也就是扫描聚簇索引的代价更低一些。

  • ALL

    最熟悉的全表扫描,就不多说了,直接看例子:

    mysql> EXPLAIN SELECT * FROM s1;

    image-20220703215958374

**小结: **

**结果值从最好到最坏依次是: **

system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

其中比较重要的几个提取出来(见上图中的粗体)。SQL 性能优化的目标:至少要达到 range 级别,要求是 ref 级别,最好是 consts级别。(阿里巴巴 开发手册要求)

6. possible_keys和key

在EXPLAIN语句输出的执行计划中,possible_keys列表示在某个查询语句中,对某个列执行单表查询时可能用到的索引有哪些。一般查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用。key列表示实际用到的索引有哪些,如果为NULL,则没有使用索引。比方说下面这个查询:

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z' AND key3 = 'a';

image-20220703220724964

上述执行计划的possible_keys列的值是idx_key1, idx_key3,表示该查询可能使用到idx_key1, idx_key3两个索引,然后key列的值是idx_key3,表示经过查询优化器计算使用不同索引的成本后,最后决定采用idx_key3

7. key_len ☆

实际使用到的索引长度 (即:字节数)

帮你检查是否充分的利用了索引值越大越好,主要针对于联合索引,有一定的参考意义。

mysql> EXPLAIN SELECT * FROM s1 WHERE id = 10005;

image-20220704130030692

int 占用 4 个字节

mysql> EXPLAIN SELECT * FROM s1 WHERE key2 = 10126;

image-20220704130138204

key2上有一个唯一性约束,是否为NULL占用一个字节,那么就是5个字节

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';

image-20220704130214482

key1 VARCHAR(100) 一个字符占3个字节,100*3,是否为NULL占用一个字节,varchar的长度信息占两个字节。

mysql> EXPLAIN SELECT * FROM s1 WHERE key_part1 = 'a';

image-20220704130442095

mysql> EXPLAIN SELECT * FROM s1 WHERE key_part1 = 'a' AND key_part2 = 'b';

image-20220704130515031

联合索引中可以比较,key_len=606的好于key_len=303

**练习: **

key_len的长度计算公式:

varchar(10)变长字段且允许NULL = 10 * ( character set:utf8=3,gbk=2,latin1=1)+1(NULL)+2(变长字段)

varchar(10)变长字段且不允许NULL = 10 * ( character set:utf8=3,gbk=2,latin1=1)+2(变长字段)

char(10)固定字段且允许NULL = 10 * ( character set:utf8=3,gbk=2,latin1=1)+1(NULL)

char(10)固定字段且不允许NULL = 10 * ( character set:utf8=3,gbk=2,latin1=1)

8. ref

image-20220704131759630

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';

image-20220704130837498

可以看到ref列的值是const,表明在使用idx_key1索引执行查询时,与key1列作等值匹配的对象是一个常数,当然有时候更复杂一点:

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON s1.id = s2.id;

image-20220704130925426

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON s2.key1 = UPPER(s1.key1);

image-20220704130957359

9. rows ☆

预估的需要读取的记录条数,值越小越好

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z';

image-20220704131050496

10. filtered

某个表经过搜索条件过滤后剩余记录条数的百分比

如果使用的是索引执行的单表扫描,那么计算时需要估计出满足除使用到对应索引的搜索条件外的其他搜索条件的记录有多少条。

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z' AND common_field = 'a';

image-20220704131323242

对于单表查询来说,这个filtered的值没有什么意义,我们更关注在连接查询中驱动表对应的执行计划记录的filtered值,它决定了被驱动表要执行的次数 (即: rows * filtered)

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON s1.key1 = s2.key1 WHERE s1.common_field = 'a';

image-20220704131644615

从执行计划中可以看出来,查询优化器打算把s1作为驱动表,s2当做被驱动表。我们可以看到驱动表s1表的执行计划的rows列为9688,filtered列为10.00,这意味着驱动表s1的扇出值就是9688 x 10.00% = 968.8,这说明还要对被驱动表执行大约968次查询。

11. Extra ☆

顾名思义,Extra列是用来说明一些额外信息的,包含不适合在其他列中显示但十分重要的额外信息。我们可以通过这些额外信息来更准确的理解MySQL到底将如何执行给定的查询语句。MySQL提供的额外信息有好几十个,我们就不一个一个介绍了,所以我们只挑选比较重要的额外信息介绍给大家。

  • No tables used

    当查询语句没有FROM子句时将会提示该额外信息,比如:

    mysql> EXPLAIN SELECT 1;

    image-20220704132345383

  • Impossible WHERE

    当查询语句的WHERE子句永远为FALSE时将会提示该额外信息

    mysql> EXPLAIN SELECT * FROM s1 WHERE 1 != 1;

    image-20220704132458978

  • Using where

    image-20220704140148163
    mysql> EXPLAIN SELECT * FROM s1 WHERE common_field = 'a';

    image-20220704132655342

    image-20220704140212813
    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a' AND common_field = 'a';

    image-20220704133130515

  • No matching min/max row

    当查询列表处有MIN或者MAX聚合函数,但是并没有符合WHERE子句中的搜索条件的记录时。

    mysql> EXPLAIN SELECT MIN(key1) FROM s1 WHERE key1 = 'abcdefg';

    image-20220704134324354

  • Using index

    当我们的查询列表以及搜索条件中只包含属于某个索引的列,也就是在可以使用覆盖索引的情况下,在Extra列将会提示该额外信息。比方说下边这个查询中只需要用到idx_key1而不需要回表操作:

    mysql> EXPLAIN SELECT key1 FROM s1 WHERE key1 = 'a';

    image-20220704134931220

  • Using index condition

    有些搜索条件中虽然出现了索引列,但却不能使用到索引,比如下边这个查询:

    SELECT * FROM s1 WHERE key1 > 'z' AND key1 LIKE '%a';
    image-20220704140344015 image-20220704140411033
    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z' AND key1 LIKE '%b';

    image-20220704140441702

  • Using join buffer (Block Nested Loop)

    在连接查询执行过程中,当被驱动表不能有效的利用索引加快访问速度,MySQL一般会为其分配一块名叫join buffer的内存块来加快查询速度,也就是我们所讲的基于块的嵌套循环算法

    mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON s1.common_field = s2.common_field;

    image-20220704140815955

  • Not exists

    当我们使用左(外)连接时,如果WHERE子句中包含要求被驱动表的某个列等于NULL值的搜索条件,而且那个列是不允许存储NULL值的,那么在该表的执行计划的Extra列就会提示这个信息:

    mysql> EXPLAIN SELECT * FROM s1 LEFT JOIN s2 ON s1.key1 = s2.key1 WHERE s2.id IS NULL;

    image-20220704142059555

  • Using intersect(...) 、 Using union(...) 和 Using sort_union(...)

    如果执行计划的Extra列出现了Using intersect(...)提示,说明准备使用Intersect索引合并的方式执行查询,括号中的...表示需要进行索引合并的索引名称;

    如果出现Using union(...)提示,说明准备使用Union索引合并的方式执行查询;

    如果出现Using sort_union(...)提示,说明准备使用Sort-Union索引合并的方式执行查询。

    mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a' OR key3 = 'a';

    image-20220704142552890

  • Zero limit

    当我们的LIMIT子句的参数为0时,表示压根儿不打算从表中读取任何记录,将会提示该额外信息

    mysql> EXPLAIN SELECT * FROM s1 LIMIT 0;

    image-20220704142754394

  • Using filesort

    有一些情况下对结果集中的记录进行排序是可以使用到索引的。

    mysql> EXPLAIN SELECT * FROM s1 ORDER BY key1 LIMIT 10;

    image-20220704142901857

    image-20220704145143170
    mysql> EXPLAIN SELECT * FROM s1 ORDER BY common_field LIMIT 10;

    image-20220704143518857

    需要注意的是,如果查询中需要使用filesort的方式进行排序的记录非常多,那么这个过程是很耗费性能的,我们最好想办法将使用文件排序的执行方式改为索引进行排序

  • Using temporary

    image-20220704145924130
    mysql> EXPLAIN SELECT DISTINCT common_field FROM s1;

    image-20220704150030005

    再比如:

    mysql> EXPLAIN SELECT common_field, COUNT(*) AS amount FROM s1 GROUP BY common_field;

    image-20220704150156416

    执行计划中出现Using temporary并不是一个好的征兆,因为建立与维护临时表要付出很大的成本的,所以我们最好能使用索引来替代掉使用临时表,比方说下边这个包含GROUP BY子句的查询就不需要使用临时表:

    mysql> EXPLAIN SELECT key1, COUNT(*) AS amount FROM s1 GROUP BY key1;

    image-20220704150308189

    ExtraUsing index 的提示里我们可以看出,上述查询只需要扫描 idx_key1 索引就可以搞 定了,不再需要临时表了。

  • 其他

    其它特殊情况这里省略。

12. 小结

  • EXPLAIN不考虑各种Cache
  • EXPLAIN不能显示MySQL在执行查询时所作的优化工作
  • EXPLAIN不会告诉你关于触发器、存储过程的信息或用户自定义函数对查询的影响情况
  • 部分统计信息是估算的,并非精确值

7. EXPLAIN的进一步使用

7.1 EXPLAIN四种输出格式

这里谈谈EXPLAIN的输出格式。EXPLAIN可以输出四种格式: 传统格式JSON格式TREE格式 以及 可视化输出 。用户可以根据需要选择适用于自己的格式。

1. 传统格式

传统格式简单明了,输出是一个表格形式,概要说明查询计划。

mysql> EXPLAIN SELECT s1.key1, s2.key1 FROM s1 LEFT JOIN s2 ON s1.key1 = s2.key1 WHERE s2.common_field IS NOT NULL;

image-20220704161702384

2. JSON格式

第1种格式中介绍的EXPLAIN语句输出中缺少了一个衡量执行好坏的重要属性 —— 成本。而JSON格式是四种格式里面输出信息最详尽的格式,里面包含了执行的成本信息。

  • JSON格式:在EXPLAIN单词和真正的查询语句中间加上 FORMAT=JSON 。
EXPLAIN FORMAT=JSON SELECT ....
  • EXPLAIN的Column与JSON的对应关系:(来源于MySQL 5.7文档)

image-20220704164236909

这样我们就可以得到一个json格式的执行计划,里面包含该计划花费的成本。比如这样:

mysql> EXPLAIN FORMAT=JSON SELECT * FROM s1 INNER JOIN s2 ON s1.key1 = s2.key2 WHERE s1.common_field = 'a'\G

image-20220704172833362

image-20220704172920158

image-20220704173012413

image-20220704173045190

image-20220704173108888

我们使用 # 后边跟随注释的形式为大家解释了 EXPLAIN FORMAT=JSON 语句的输出内容,但是大家可能 有疑问 "cost_info" 里边的成本看着怪怪的,它们是怎么计算出来的?先看 s1 表的 "cost_info" 部 分:

"cost_info": {
    "read_cost": "1840.84",
    "eval_cost": "193.76",
    "prefix_cost": "2034.60",
    "data_read_per_join": "1M"
}
  • read_cost 是由下边这两部分组成的:

    • IO 成本
    • 检测 rows × (1 - filter) 条记录的 CPU 成本

    小贴士: rows和filter都是我们前边介绍执行计划的输出列,在JSON格式的执行计划中,rows 相当于rows_examined_per_scan,filtered名称不变。

  • eval_cost 是这样计算的:

    检测 rows × filter 条记录的成本。

  • prefix_cost 就是单独查询 s1 表的成本,也就是:

    read_cost + eval_cost

  • data_read_per_join 表示在此次查询中需要读取的数据量。

对于 s2 表的 "cost_info" 部分是这样的:

"cost_info": {
    "read_cost": "968.80",
    "eval_cost": "193.76",
    "prefix_cost": "3197.16",
    "data_read_per_join": "1M"
}

由于 s2 表是被驱动表,所以可能被读取多次,这里的read_costeval_cost 是访问多次 s2 表后累加起来的值,大家主要关注里边儿的 prefix_cost 的值代表的是整个连接查询预计的成本,也就是单次查询 s1 表和多次查询 s2 表后的成本的和,也就是:

968.80 + 193.76 + 2034.60 = 3197.16

3. TREE格式

TREE格式是8.0.16版本之后引入的新格式,主要根据查询的 各个部分之间的关系各部分的执行顺序 来描述如何查询。

mysql> EXPLAIN FORMAT=tree SELECT * FROM s1 INNER JOIN s2 ON s1.key1 = s2.key2 WHERE
s1.common_field = 'a'\G
*************************** 1. row ***************************
EXPLAIN: -> Nested loop inner join (cost=1360.08 rows=990)
-> Filter: ((s1.common_field = 'a') and (s1.key1 is not null)) (cost=1013.75
rows=990)
-> Table scan on s1 (cost=1013.75 rows=9895)
-> Single-row index lookup on s2 using idx_key2 (key2=s1.key1), with index
condition: (cast(s1.key1 as double) = cast(s2.key2 as double)) (cost=0.25 rows=1)
1 row in set, 1 warning (0.00 sec)

4. 可视化输出

可视化输出,可以通过MySQL Workbench可视化查看MySQL的执行计划。通过点击Workbench的放大镜图标,即可生成可视化的查询计划。

image-20220704174401970

上图按从左到右的连接顺序显示表。红色框表示 全表扫描 ,而绿色框表示使用 索引查找 。对于每个表, 显示使用的索引。还要注意的是,每个表格的框上方是每个表访问所发现的行数的估计值以及访问该表的成本。

7.2 SHOW WARNINGS的使用

在我们使用EXPLAIN语句查看了某个查询的执行计划后,紧接着还可以使用SHOW WARNINGS语句查看与这个查询的执行计划有关的一些扩展信息,比如这样:

mysql> EXPLAIN SELECT s1.key1, s2.key1 FROM s1 LEFT JOIN s2 ON s1.key1 = s2.key1 WHERE s2.common_field IS NOT NULL;

image-20220704174543663

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
    Level: Note
     Code: 1003
Message: /* select#1 */ select `atguigu`.`s1`.`key1` AS `key1`,`atguigu`.`s2`.`key1`
AS `key1` from `atguigu`.`s1` join `atguigu`.`s2` where ((`atguigu`.`s1`.`key1` =
`atguigu`.`s2`.`key1`) and (`atguigu`.`s2`.`common_field` is not null))
1 row in set (0.00 sec)

大家可以看到SHOW WARNINGS展示出来的信息有三个字段,分别是Level、Code、Message。我们最常见的就是Code为1003的信息,当Code值为1003时,Message字段展示的信息类似于查询优化器将我们的查询语句重写后的语句。比如我们上边的查询本来是一个左(外)连接查询,但是有一个s2.common_field IS NOT NULL的条件,这就会导致查询优化器把左(外)连接查询优化为内连接查询,从SHOW WARNINGSMessage字段也可以看出来,原本的LEFE JOIN已经变成了JOIN。

但是大家一定要注意,我们说Message字段展示的信息类似于查询优化器将我们的查询语句重写后的语句,并不是等价于,也就是说Message字段展示的信息并不是标准的查询语句,在很多情况下并不能直接拿到黑框框中运行,它只能作为帮助我们理解MySQL将如何执行查询语句的一个参考依据而已。

8. 分析优化器执行计划:trace

image-20220704175711800

SET optimizer_trace="enabled=on",end_markers_in_json=on;
set optimizer_trace_max_mem_size=1000000;

开启后,可分析如下语句:

  • SELECT
  • INSERT
  • REPLACE
  • UPDATE
  • DELETE
  • EXPLAIN
  • SET
  • DECLARE
  • CASE
  • IF
  • RETURN
  • CALL

测试:执行如下SQL语句

select * from student where id < 10;

最后, 查询 information_schema.optimizer_trace 就可以知道MySQL是如何执行SQL的 :

select * from information_schema.optimizer_trace\G
*************************** 1. row ***************************
//1部分:查询语句
QUERY: select * from student where id < 10
//2部分:QUERY字段对应语句的跟踪信息
TRACE: {
"steps": [
{
    "join_preparation": { //预备工作
        "select#": 1,
        "steps": [
            {
            "expanded_query": "/* select#1 */ select `student`.`id` AS
            `id`,`student`.`stuno` AS `stuno`,`student`.`name` AS `name`,`student`.`age` AS
            `age`,`student`.`classId` AS `classId` from `student` where (`student`.`id` < 10)"
            }
        ] /* steps */
    } /* join_preparation */
},
{
    "join_optimization": { //进行优化
    "select#": 1,
    "steps": [
        {
        "condition_processing": { //条件处理
        "condition": "WHERE",
        "original_condition": "(`student`.`id` < 10)",
        "steps": [
        {
            "transformation": "equality_propagation",
            "resulting_condition": "(`student`.`id` < 10)"
        },
        {
            "transformation": "constant_propagation",
            "resulting_condition": "(`student`.`id` < 10)"
        },
        {
            "transformation": "trivial_condition_removal",
            "resulting_condition": "(`student`.`id` < 10)"
        }
        ] /* steps */
    } /* condition_processing */
    },
    {
        "substitute_generated_columns": { //替换生成的列
        } /* substitute_generated_columns */
    },
    {
        "table_dependencies": [ //表的依赖关系
        {
            "table": "`student`",
            "row_may_be_null": false,
            "map_bit": 0,
            "depends_on_map_bits": [
            ] /* depends_on_map_bits */
        }
    ] /* table_dependencies */
    },
    {
    "ref_optimizer_key_uses": [ //使用键
        ] /* ref_optimizer_key_uses */
        },
    {
        "rows_estimation": [ //行判断
        {
            "table": "`student`",
            "range_analysis": {
                "table_scan": {
                    "rows": 3973767,
                    "cost": 408558
            } /* table_scan */, //扫描表
            "potential_range_indexes": [ //潜在的范围索引
                {
                    "index": "PRIMARY",
                    "usable": true,
                    "key_parts": [
                    "id"
                    ] /* key_parts */
                }
            ] /* potential_range_indexes */,
        "setup_range_conditions": [ //设置范围条件
        ] /* setup_range_conditions */,
        "group_index_range": {
            "chosen": false,
            "cause": "not_group_by_or_distinct"
        } /* group_index_range */,
            "skip_scan_range": {
                "potential_skip_scan_indexes": [
                    {
                        "index": "PRIMARY",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                    }
                ] /* potential_skip_scan_indexes */
            } /* skip_scan_range */,
        "analyzing_range_alternatives": { //分析范围选项
            "range_scan_alternatives": [
                {
                "index": "PRIMARY",
                    "ranges": [
                        "id < 10"
                    ] /* ranges */,
                "index_dives_for_eq_ranges": true,
                "rowid_ordered": true,
                "using_mrr": false,
                "index_only": false,
                "rows": 9,
                "cost": 1.91986,
                "chosen": true
                }
            ] /* range_scan_alternatives */,
        "analyzing_roworder_intersect": {
            "usable": false,
            "cause": "too_few_roworder_scans"
        	} /* analyzing_roworder_intersect */
        } /* analyzing_range_alternatives */,
        "chosen_range_access_summary": { //选择范围访问摘要
            "range_access_plan": {
                "type": "range_scan",
                "index": "PRIMARY",
                "rows": 9,
                "ranges": [
                "id < 10"
                ] /* ranges */
                } /* range_access_plan */,
                "rows_for_plan": 9,
                "cost_for_plan": 1.91986,
                "chosen": true
                } /* chosen_range_access_summary */
                } /* range_analysis */
            }
        ] /* rows_estimation */
    },
    {
    "considered_execution_plans": [ //考虑执行计划
    {
    "plan_prefix": [
    ] /* plan_prefix */,
        "table": "`student`",
        "best_access_path": { //最佳访问路径
        "considered_access_paths": [
        {
            "rows_to_scan": 9,
            "access_type": "range",
            "range_details": {
            "used_index": "PRIMARY"
        } /* range_details */,
        "resulting_rows": 9,
        "cost": 2.81986,
        "chosen": true
    }
    ] /* considered_access_paths */
    } /* best_access_path */,
        "condition_filtering_pct": 100, //行过滤百分比
        "rows_for_plan": 9,
        "cost_for_plan": 2.81986,
        "chosen": true
    }
    ] /* considered_execution_plans */
    },
    {
        "attaching_conditions_to_tables": { //将条件附加到表上
        "original_condition": "(`student`.`id` < 10)",
        "attached_conditions_computation": [
        ] /* attached_conditions_computation */,
        "attached_conditions_summary": [ //附加条件概要
    {
        "table": "`student`",
        "attached": "(`student`.`id` < 10)"
    }
    ] /* attached_conditions_summary */
    } /* attaching_conditions_to_tables */
    },
    {
    "finalizing_table_conditions": [
    {
        "table": "`student`",
        "original_table_condition": "(`student`.`id` < 10)",
        "final_table_condition ": "(`student`.`id` < 10)"
    }
    ] /* finalizing_table_conditions */
    },
    {
    "refine_plan": [ //精简计划
    {
    	"table": "`student`"
    }
    ] /* refine_plan */
    }
    ] /* steps */
    } /* join_optimization */
},
	{
        "join_execution": { //执行
            "select#": 1,
            "steps": [
            ] /* steps */
        	} /* join_execution */
        }
    ] /* steps */
}
//3部分:跟踪信息过长时,被截断的跟踪信息的字节数。
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0 //丢失的超出最大容量的字节
//4部分:执行跟踪语句的用户是否有查看对象的权限。当不具有权限时,该列信息为1且TRACE字段为空,一般在
调用带有SQL SECURITY DEFINER的视图或者是存储过程的情况下,会出现此问题。
INSUFFICIENT_PRIVILEGES: 0 //缺失权限
1 row in set (0.00 sec)

9. MySQL监控分析视图-sys schema

image-20220704190726180

9.1 Sys schema视图摘要

  1. 主机相关:以host_summary开头,主要汇总了IO延迟的信息。
  2. Innodb相关:以innodb开头,汇总了innodb buffer信息和事务等待innodb锁的信息。
  3. I/o相关:以io开头,汇总了等待I/O、I/O使用量情况。
  4. 内存使用情况:以memory开头,从主机、线程、事件等角度展示内存的使用情况
  5. 连接与会话信息:processlist和session相关视图,总结了会话相关信息。
  6. 表相关:以schema_table开头的视图,展示了表的统计信息。
  7. 索引信息:统计了索引的使用情况,包含冗余索引和未使用的索引情况。
  8. 语句相关:以statement开头,包含执行全表扫描、使用临时表、排序等的语句信息。
  9. 用户相关:以user开头的视图,统计了用户使用的文件I/O、执行语句统计信息。
  10. 等待事件相关信息:以wait开头,展示等待事件的延迟情况。

9.2 Sys schema视图使用场景

索引情况

#1. 查询冗余索引
select * from sys.schema_redundant_indexes;
#2. 查询未使用过的索引
select * from sys.schema_unused_indexes;
#3. 查询索引的使用情况
select index_name,rows_selected,rows_inserted,rows_updated,rows_deleted
from sys.schema_index_statistics where table_schema='dbname';

表相关

# 1. 查询表的访问量
select table_schema,table_name,sum(io_read_requests+io_write_requests) as io from
sys.schema_table_statistics group by table_schema,table_name order by io desc;
# 2. 查询占用bufferpool较多的表
select object_schema,object_name,allocated,data
from sys.innodb_buffer_stats_by_table order by allocated limit 10;
# 3. 查看表的全表扫描情况
select * from sys.statements_with_full_table_scans where db='dbname';

语句相关

#1. 监控SQL执行的频率
select db,exec_count,query from sys.statement_analysis
order by exec_count desc;
#2. 监控使用了排序的SQL
select db,exec_count,first_seen,last_seen,query
from sys.statements_with_sorting limit 1;
#3. 监控使用了临时表或者磁盘临时表的SQL
select db,exec_count,tmp_tables,tmp_disk_tables,query
from sys.statement_analysis where tmp_tables>0 or tmp_disk_tables >0
order by (tmp_tables+tmp_disk_tables) desc;

IO相关

#1. 查看消耗磁盘IO的文件
select file,avg_read,avg_write,avg_read+avg_write as avg_io
from sys.io_global_by_file_by_bytes order by avg_read limit 10;

Innodb 相关

#1. 行锁阻塞情况
select * from sys.innodb_lock_waits;

image-20220704192020603

10. 小结

查询是数据库中最频繁的操作,提高查询速度可以有效地提高MySQL数据库的性能。通过对查询语句的分析可以了解查询语句的执行情况,找出查询语句执行的瓶颈,从而优化查询语句。