Skip to content
/ yaya Public

YAYA - Yet annother YOLO annoter for images (in QT5). Support yolo format, image modifications, labeling and detecting with previously trained detector.

License

Notifications You must be signed in to change notification settings

AISP-PL/yaya

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YAYA - Yet Another YOLO Annoter

title

YAYA - Yet Another YOLO Annoter with QT5 widgets gui, and ...

  • Rewritten in python,
  • Checks for errors of overriding boxes,
  • Displays image properties size, hue, saturation, brightness,
  • Displays annotations properties, average size, class numbers,
  • Uses given YOLOv4 detectors to detect every file and store detections!
  • Calculate metrics TP,TN,FP,FN,Precision,Recall for every photo!
  • Auto-annotation with YOLOv4 detectors feature added - use yolo to detect and describe annotations of your image,
  • Manual Yolo detection by presing 'd' - to check YOLO with original data,
  • You can use standard YOLOv4 (MSCOCO) or your custom YOLOv4

Requirements

pip install -r requirements

Install YOLOv4 darknet library libdarknet.so in your operating system (https://github.com/AlexeyAB/darknet) for usage of custom YOLOv4 detectors.

How to add custom YOLOv4 detector?

  1. Inside directory ObjectDetectors/ create your detector directory (for example yolov4custom).
  2. Copy all YOLOv4 detector files : yolo.cfg, yolo.data, yolo.names, yolo.weights (names should be identicall)
  3. Got it! Now you can use this detector!

Found detectors list is also shown at the program start, example :

python ./yolo-annotate.py -i input/
DEBUG:root:Logging enabled!
/usr/local/lib/libdarknet.so
INFO:root:(Found detector) 0 - /home/spasz/python/aisp-tools/yaya/ObjectDetectors/yolov4custom/yolo.

How to start?

To load all test images from input directory and start application, you can use command

./yolo-annotate.py -i input/

Key codes

LPM - create annotation
d - run detector
r - remove annotation
c - clear all annotations
s - save all (if errors not exists)
arrow -> or . - next image
arrow <- or , - previous image

Command line

usage: yolo-annotate.py [-h] -i INPUT [-c CONFIG] [-on] [-yc] [-v]

optional arguments:
  -h, --help       show this help message and exit
  -i INPUT, --input INPUT
             Input path
  -c CONFIG, --config CONFIG
             Config path
  -on, --onlyNewFiles  Process only files without detections file.
  -yc, --yoloCustom   Use custom YOLO.
  -v, --verbose     Show verbose finded and processed data

[!DEPRECATED!] yolo-annotate - old OpenCV version.

title

[!DEPRECATED! - Use release/v0.6-OpenCV for old OpenCV version] Yet Another yolo annotation program. Yolo_mark clone with openCV gui, but ...

  • Rewritten in python,
  • Checks for errors of overriding boxes,
  • Auto-annotation feature added - use yolo to detect and describe annotations of your image,
  • Manual Yolo detection by presing 'd' - to check YOLO with original data,
  • You can use standard YOLOv4 (MSCOCO) or your custom YOLOv4

About

YAYA - Yet annother YOLO annoter for images (in QT5). Support yolo format, image modifications, labeling and detecting with previously trained detector.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages