This repository has been archived by the owner on Feb 8, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataflow.go
756 lines (645 loc) · 17.2 KB
/
dataflow.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
package iop
import (
"context"
"os"
"strings"
"sync"
"time"
"github.com/flarco/g"
"github.com/samber/lo"
"github.com/spf13/cast"
)
// Dataflow is a collection of concurrent Datastreams
type Dataflow struct {
Columns Columns
Buffer [][]interface{}
StreamCh chan *Datastream
Streams []*Datastream
Context *g.Context
Limit uint64
InBytes uint64
OutBytes uint64
deferFuncs []func()
Ready bool
Inferred bool
FsURL string
OnColumnChanged func(col Column) error
OnColumnAdded func(col Column) error
readyChn chan struct{}
StreamMap map[string]*Datastream
closed bool
mux sync.Mutex
SchemaVersion int // for column type version
}
// NewDataflow creates a new dataflow
func NewDataflow(limit ...int) (df *Dataflow) {
Limit := uint64(0) // infinite
if len(limit) > 0 && limit[0] != 0 {
Limit = cast.ToUint64(limit[0])
}
ctx := g.NewContext(context.Background())
df = &Dataflow{
StreamCh: make(chan *Datastream, 1),
Streams: []*Datastream{},
Context: &ctx,
Limit: Limit,
StreamMap: map[string]*Datastream{},
deferFuncs: []func(){},
readyChn: make(chan struct{}),
OnColumnAdded: func(col Column) error { return nil },
}
// df.OnColumnAdded = func(col Column) (err error) {
// eG := g.ErrorGroup{}
// for _, ds := range df.Streams {
// eG.Capture(ds.OnColumnAdded(col))
// }
// return eG.Err()
// }
return
}
// Err return the error if any
func (df *Dataflow) Err() (err error) {
eG := g.ErrorGroup{}
for _, ds := range df.Streams {
eG.Capture(ds.Err())
}
if err = df.Context.Err(); err != nil {
if err.Error() == "context canceled" {
return eG.Err()
}
return err
}
return eG.Err()
}
// IsClosed is true is ds is closed
func (df *Dataflow) IsClosed() bool {
return df.closed
}
// CleanUp refers the defer functions
func (df *Dataflow) CleanUp() {
g.Trace("executing defer functions")
df.mux.Lock()
defer df.mux.Unlock()
for i, f := range df.deferFuncs {
f()
df.deferFuncs[i] = func() {} // in case it gets called again
}
}
// Defer runs a given function as close of Dataflow
func (df *Dataflow) Defer(f func()) {
df.mux.Lock()
defer df.mux.Unlock()
if !cast.ToBool(os.Getenv("KEEP_TEMP_FILES")) {
df.deferFuncs = append(df.deferFuncs, f)
}
}
// Close closes the df
func (df *Dataflow) Close() {
if !df.closed {
close(df.StreamCh)
}
df.closed = true
}
// Pause pauses all streams
func (df *Dataflow) Pause(exceptDs ...string) bool {
if df.Ready {
timer := time.NewTimer(time.Duration(g.RandInt(3000)+1000) * time.Millisecond)
for {
df.mux.Lock()
// try to pause all datastreams, or none
pauseMap := map[string]bool{}
for _, ds := range df.Streams {
if !lo.Contains(exceptDs, ds.ID) && !ds.closed {
pauseMap[ds.ID] = ds.TryPause()
}
}
pauseSlice := lo.Values(pauseMap)
if len(lo.Filter(pauseSlice, func(v bool, i int) bool { return v })) == len(pauseSlice) {
df.mux.Unlock()
break // only exit if all datastreams are paused
} else if len(pauseSlice) == 0 {
df.mux.Unlock()
break
}
// unpause paused since could not do distributed pause, and wait a bit
for _, ds := range df.Streams {
if paused, ok := pauseMap[ds.ID]; ok && paused {
ds.Unpause()
}
}
df.mux.Unlock()
time.Sleep(time.Duration(g.RandInt(100)) * time.Millisecond)
select {
case <-timer.C:
return false
default:
}
}
}
return true
}
// Unpause unpauses all streams
func (df *Dataflow) Unpause(exceptDs ...string) {
df.mux.Lock()
defer df.mux.Unlock()
if df.Ready {
for _, ds := range df.Streams {
if !lo.Contains(exceptDs, ds.ID) {
ds.Unpause()
}
}
}
}
// SetReady sets the df.ready
func (df *Dataflow) SetReady() {
if !df.Ready {
df.mux.Lock()
defer df.mux.Unlock()
// set inferred
df.Inferred = true
for _, ds := range df.Streams {
if !ds.Inferred {
df.Inferred = false
}
}
df.Ready = true
go func() { df.readyChn <- struct{}{} }()
}
}
// SetEmpty sets all underlying datastreams empty
func (df *Dataflow) SetEmpty() {
for _, ds := range df.Streams {
ds.SetEmpty()
}
}
// IsEmpty returns true is ds.Rows of all channels as empty
func (df *Dataflow) IsEmpty() bool {
df.mux.Lock()
defer df.mux.Unlock()
for _, ds := range df.Streams {
if ds != nil && ds.Ready {
if !ds.empty {
return false
}
} else {
return false
}
}
return true
}
// SetColumns sets the columns
func (df *Dataflow) SetColumns(columns []Column) {
df.Columns = columns
// for i := range df.Streams {
// df.Streams[i].Columns = columns
// df.Streams[i].Inferred = true
// }
}
// SetColumns sets the columns
func (df *Dataflow) AddColumns(newCols Columns, overwrite bool, exceptDs ...string) (added Columns, processOk bool) {
df.mux.Lock()
df.Columns, added = df.Columns.Add(newCols, overwrite)
df.mux.Unlock()
if len(added) > 0 {
if !df.Pause(exceptDs...) {
return added, false
}
// lock for operation
df.Context.Lock()
// wait for current batches to close
df.CloseCurrentBatches()
for _, addedCol := range added {
if err := df.OnColumnAdded(addedCol); err != nil {
g.LogError(err)
df.Context.CaptureErr(err)
} else {
df.incrementVersion()
}
}
df.Context.Unlock()
df.Unpause(exceptDs...)
}
return added, true
}
// SetColumns sets the columns
func (df *Dataflow) ChangeColumn(i int, newType ColumnType, exceptDs ...string) bool {
if df.OnColumnChanged == nil {
g.DebugLow("df.OnColumnChanged is not defined")
return false
}
if !df.Pause(exceptDs...) {
return false
}
// lock for operation
df.Context.Lock()
// wait for current batches to close
df.CloseCurrentBatches()
df.Columns[i].Type = newType
if err := df.OnColumnChanged(df.Columns[i]); err != nil {
df.Context.CaptureErr(err)
} else {
df.incrementVersion()
}
df.Context.Unlock()
df.Unpause(exceptDs...)
return true
}
func (df *Dataflow) incrementVersion() {
df.mux.Lock()
defer df.mux.Unlock()
df.SchemaVersion++ // increment version
for _, ds0 := range df.Streams {
if len(ds0.Columns) == len(df.Columns) {
for i := range df.Columns {
ds0.Columns[i].Type = df.Columns[i].Type
}
}
}
}
func (df *Dataflow) CloseCurrentBatches() {
for _, ds := range df.Streams {
if batch := ds.LatestBatch(); batch != nil {
batch.Close()
}
}
}
// MakeStreamCh determines whether to merge all the streams into one
// or keep them separate. If data is small per stream, it's best to merge
// For example, Bigquery has limits on number of operations can be called within a time limit
func (df *Dataflow) MakeStreamCh(forceMerge bool) (streamCh chan *Datastream) {
streamCh = make(chan *Datastream, df.Context.Wg.Limit)
totalBufferRows := 0
totalCnt := 0
minBufferRows := SampleSize
df.mux.Lock()
for _, ds := range df.Streams {
if ds.Ready && len(ds.Buffer) < minBufferRows {
minBufferRows = len(ds.Buffer)
totalBufferRows = totalBufferRows + len(ds.Buffer)
totalCnt++
}
}
df.mux.Unlock()
avgBufferRows := cast.ToFloat64(totalBufferRows) / cast.ToFloat64(totalCnt)
go func() {
defer close(streamCh)
// buffer should be at least 90% full on average, 80% full at minimum
if forceMerge || avgBufferRows < 0.9*cast.ToFloat64(SampleSize) || cast.ToFloat64(minBufferRows) < 0.8*cast.ToFloat64(SampleSize) {
streamCh <- MergeDataflow(df)
} else {
for ds := range df.StreamCh {
streamCh <- ds
}
}
}()
return
}
// SyncColumns a workaround to synch the ds.Columns to the df.Columns
func (df *Dataflow) SyncColumns() {
df.mux.Lock()
defer df.mux.Unlock()
for _, ds := range df.Streams {
colMap := df.Columns.FieldMap(true)
for i, col := range ds.Columns {
maxLen := ds.Columns[i].Stats.MaxLen // old max length
// sync stats
ds.Columns[i].Stats = *ds.Sp.colStats[i]
// keep max len if greater (from manual column length spec)
if maxLen > ds.Columns[i].Stats.MaxLen {
ds.Columns[i].Stats.MaxLen = maxLen
}
colName := strings.ToLower(col.Name)
if _, ok := colMap[colName]; !ok {
col.Position = len(df.Columns)
df.Columns = append(df.Columns, col)
}
}
}
}
// SyncStats sync stream processor stats aggregated to the df.Columns
func (df *Dataflow) SyncStats() {
df.mux.Lock()
defer df.mux.Unlock()
dfColMap := df.Columns.FieldMap(true)
// for some reason, df.Columns remains the same as the first ds.Columns
// need to recreate them, reassign from dfCols
dfCols := Columns{}
for _, col := range df.Columns {
dfCols = append(dfCols, Column{
Name: col.Name,
Type: col.Type,
Description: col.Description,
Position: col.Position,
DbType: col.DbType,
DbPrecision: col.DbPrecision,
DbScale: col.DbScale,
Sourced: col.Sourced,
goType: col.goType,
Table: col.Table,
Schema: col.Schema,
Database: col.Database,
Stats: ColumnStats{MaxLen: col.Stats.MaxLen}, // keep manual column length spec
Metadata: col.Metadata,
})
}
for _, ds := range df.Streams {
for j, col := range ds.Columns {
i, ok := dfColMap[strings.ToLower(col.Name)]
if !ok {
g.DebugLow("Warning: column '%s' not found in df.SyncStats", col.Name)
continue
}
colStats := ds.Sp.colStats[j]
dfCols[i].Stats.TotalCnt = dfCols[i].Stats.TotalCnt + colStats.TotalCnt
dfCols[i].Stats.NullCnt = dfCols[i].Stats.NullCnt + colStats.NullCnt
dfCols[i].Stats.StringCnt = dfCols[i].Stats.StringCnt + colStats.StringCnt
dfCols[i].Stats.JsonCnt = dfCols[i].Stats.JsonCnt + colStats.JsonCnt
dfCols[i].Stats.IntCnt = dfCols[i].Stats.IntCnt + colStats.IntCnt
dfCols[i].Stats.DecCnt = dfCols[i].Stats.DecCnt + colStats.DecCnt
dfCols[i].Stats.BoolCnt = dfCols[i].Stats.BoolCnt + colStats.BoolCnt
dfCols[i].Stats.DateCnt = dfCols[i].Stats.DateCnt + colStats.DateCnt
dfCols[i].Stats.Checksum = dfCols[i].Stats.Checksum + colStats.Checksum
if colStats.Min < dfCols[i].Stats.Min {
dfCols[i].Stats.Min = colStats.Min
}
if colStats.Max > dfCols[i].Stats.Max {
dfCols[i].Stats.Max = colStats.Max
}
if colStats.MaxLen > dfCols[i].Stats.MaxLen {
dfCols[i].Stats.MaxLen = colStats.MaxLen
}
if colStats.MaxDecLen > dfCols[i].Stats.MaxDecLen {
dfCols[i].Stats.MaxDecLen = colStats.MaxDecLen
}
}
}
// reassign from dfCols
df.Columns = dfCols
if !df.Inferred {
df.Columns = InferFromStats(df.Columns, false, false)
df.Inferred = true
}
}
// Count returns the aggregate count
func (df *Dataflow) Count() (cnt uint64) {
if df != nil && df.Ready {
for _, ds := range df.Streams {
if ds.Ready {
cnt += ds.Count
}
}
}
return
}
// AddInBytes add ingress bytes
func (df *Dataflow) AddInBytes(bytes uint64) {
df.InBytes = df.InBytes + bytes
}
// AddOutBytes add egress bytes
func (df *Dataflow) AddOutBytes(bytes uint64) {
df.OutBytes = df.OutBytes + bytes
}
func (df *Dataflow) Bytes() (inBytes, outBytes uint64) {
// outBytes = df.OutBytes // use DsTotalBytes
// inBytes = df.InBytes // use DsTotalBytes
dsBytes := df.DsTotalBytes()
if inBytes == 0 {
inBytes = dsBytes
}
if outBytes == 0 {
outBytes = dsBytes
}
return
}
func (df *Dataflow) DsTotalBytes() (bytes uint64) {
if df != nil && df.Ready {
for _, ds := range df.Streams {
if ds.Ready {
bytes += ds.Bytes
}
}
}
return
}
// Size is the number of streams
func (df *Dataflow) Size() int {
return len(df.Streams)
}
func (df *Dataflow) PushStreamChan(dsCh chan *Datastream) {
defer df.Close()
pushCnt := 0
defer func() { g.Trace("pushed %d datastreams", pushCnt) }()
for ds := range dsCh {
if df.closed {
break
}
if df.Err() != nil {
return
}
if ds.Err() != nil {
df.Context.CaptureErr(ds.Err())
return
}
select {
case <-df.Context.Ctx.Done():
return
case <-ds.Context.Ctx.Done():
return
case <-ds.readyChn:
// wait for first ds to start streaming.
// columns/buffer need to be populated
if len(df.Streams) > 0 {
// add new columns two-way if not exist
newCols, ok := df.AddColumns(ds.Columns, false)
if !ok {
// Could not run AddColumns process, queue for later
ds.schemaChgChan <- schemaChg{Added: true, Cols: newCols}
}
// add new columns two-way if not exist
df.mux.Lock()
ds.AddColumns(df.Columns, false)
df.mux.Unlock()
} else {
df.Columns = ds.Columns
df.Buffer = ds.Buffer
}
// push stream, keep retrying
tryPush:
df.mux.Lock()
ds.df = df
select {
case df.StreamCh <- ds:
df.StreamMap[ds.ID] = ds
df.Streams = append(df.Streams, ds)
df.mux.Unlock()
default:
df.mux.Unlock()
time.Sleep(1 * time.Millisecond)
if df.closed {
return
}
goto tryPush
}
pushCnt++
g.Trace("%d datastreams pushed [%s]", pushCnt, ds.ID)
if df.Limit > 0 && df.Count() >= df.Limit {
g.Debug("reached dataflow limit of %d", df.Limit)
df.SetReady()
return
} else if df.Count() >= uint64(SampleSize) {
df.SetReady()
} else if len(df.StreamCh) == cap(df.StreamCh) {
df.SetReady()
}
}
}
df.SetReady()
}
// WaitReady waits until dataflow is ready
func (df *Dataflow) WaitReady() error {
// wait for first ds to start streaming.
// columns need to be populated
select {
case <-df.readyChn:
return df.Err()
case <-df.Context.Ctx.Done():
return df.Err()
}
}
// WaitClosed waits until dataflow is closed
// hack to make sure all streams are pushed
func (df *Dataflow) WaitClosed() {
for {
if df.closed {
return
}
time.Sleep(5 * time.Millisecond)
}
}
// Collect reads from one or more streams and return a dataset
func (df *Dataflow) Collect() (data Dataset, err error) {
var datas []Dataset
for ds := range df.StreamCh {
d, err := ds.Collect(int(df.Limit))
if err != nil {
return NewDataset(nil), g.Error(err, "Error collecting ds")
}
datas = append(datas, d)
data.AddColumns(d.Columns, false)
}
data.Result = nil
data.Rows = [][]interface{}{}
for _, d := range datas {
// augment row size as needed
for i := range d.Rows {
for len(d.Rows[i]) < len(data.Columns) {
d.Rows[i] = append(d.Rows[i], nil)
}
}
data.Rows = append(data.Rows, d.Rows...)
}
if err = df.Err(); err != nil {
err = g.Error(err)
}
return
}
// MakeDataFlow create a dataflow from datastreams
func MakeDataFlow(dss ...*Datastream) (df *Dataflow, err error) {
if len(dss) == 0 {
err = g.Error("Provided 0 datastreams for: %#v", dss)
return
}
df = NewDataflow()
dsCh := make(chan *Datastream)
go func() {
defer close(dsCh)
for _, ds := range dss {
dsCh <- ds
}
}()
go df.PushStreamChan(dsCh)
// wait for first ds to start streaming.
// columns need to be populated
err = df.WaitReady()
if err != nil {
return df, err
}
return df, nil
}
// MergeDataflow merges the dataflow streams into one
func MergeDataflow(df *Dataflow) (dsN *Datastream) {
rows := MakeRowsChan()
nextFunc := func(it *Iterator) bool {
for it.Row = range rows {
return true
}
return false
}
dsN = NewDatastreamIt(df.Context.Ctx, df.Columns, nextFunc)
dsN.it.IsCasted = true
dsN.Inferred = true
go func() {
defer close(rows)
for ds := range df.StreamCh {
for batch := range ds.BatchChan {
if !dsN.Columns.IsSimilarTo(df.Columns) {
dsN.AddColumns(df.Columns, false)
// batch.Shape(ds.Columns, true)
// g.DebugLow("%s, NewBatch since added", dsN.ID)
// time.Sleep(2 * time.Second)
dsN.NewBatch(dsN.Columns)
}
shaper, err := batch.Columns.MakeShaper(dsN.Columns)
if err != nil {
g.LogError(g.Error(err, "could not MakeShaper"))
}
if shaper == nil {
shaper = &Shaper{
Func: func(row []any) []any { return row },
SrcColumns: batch.Columns,
TgtColumns: dsN.Columns,
ColMap: map[int]int{},
}
}
for row := range batch.Rows {
// srcRec := batch.Columns.MakeRec(row)
// tgtRec := dsN.Columns.MakeRec(shaper.Func(row))
// diff := false
// for k := range srcRec {
// if srcRec[k] != tgtRec[k] {
// sI := lo.IndexOf(batch.Columns.Names(true), strings.ToLower(k))
// tI := lo.IndexOf(dsN.Columns.Names(true), strings.ToLower(k))
// g.Warn("Key `%s` is mapped from %d to %d => %#v != %#v", k, sI, tI, srcRec[k], tgtRec[k])
// diff = true
// }
// }
// if diff {
// g.Info("shaper.SrcColumns = %s", g.Marshal(shaper.SrcColumns.Names()))
// g.Info("shaper.TgtColumns = %s", g.Marshal(shaper.TgtColumns.Names()))
// g.Info("shaper.ColMap = %s", g.Marshal(shaper.ColMap))
// if batch.Columns.IsDifferent(shaper.SrcColumns) {
// g.Warn("batch0.Columns.IsDifferent(shaper.SrcColumns)")
// }
// if dsN.Columns.IsDifferent(shaper.TgtColumns) {
// g.Warn("ds.Columns.IsDifferent(shaper.TgtColumns")
// }
// }
// if ds.CurrentBatch != nil && ds.CurrentBatch.Count < 2 {
// g.Warn("%s | batch0.Rec = %s", batch0.ID(), g.Marshal(batch0.Columns.MakeRec(row)))
// g.Warn("%s | batch0.Rec.Shaped = %s", ds.CurrentBatch.ID(), g.Marshal(ds.Columns.MakeRec(shaper(row))))
// }
rows <- shaper.Func(row)
}
if dsN.CurrentBatch != nil {
dsN.CurrentBatch.Close()
}
}
ds.Buffer = nil // clear buffer
}
}()
err := dsN.Start()
if err != nil {
df.Context.CaptureErr(err)
}
return dsN
}